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Abstract
A unified theory of zonal flow shears and density corrugations in drift wave turbulence is
presented. Polarization and density advection beat excitation are studied in combination with
modulational response. Noise is driven by two-time flux correlation. While the effective zonal
flow eddy viscosity can go negative, the zonal diffusivity is positive definite. There is no inverse
cascade of density corrugation. The connection between avalanches and corrugations is
discussed. The zonal cross-correlation is identified and calculated. Conditions for alignment of
zonal shears and corrugation gradients are determined, and the implications for staircase
structure are discussed. We show that the synergy of beat noise and modulational effects is
stronger than either alone. Strong zonal flows can be excited well below the modulational
instability threshold. In the context of L–H transition, zonal noise quenches turbulence
overshoot by eliminating the threshold for zonal flow excitation. The power threshold for L–H
transition is lowered.
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1. Introduction

Appreciation of the role of zonal modes has lead to a paradigm
shift in our conception of drift wave turbulence, so much
so that we now refer to it as ‘drift wave-zonal flow turbu-
lence (DW-ZFT)’. DW-ZFT self-regulates by the interaction
of generation—i.e. non-linear transfer to zonal modes with
feedback of zonal structures on drift waves by shearing and
corrugation [1–3]. DW-ZFT has two components: drift waves
(‘wavy’-kθ ̸= 0) and zonal modes with kθ = kz = 0. Note that
symmetry distinguishes zonal from wavy populations. Of
course, due to their two directions of symmetry, zonal modes
are special, as they are the modes of minimal inertia, transport
and damping. It’s also important to recall that the zonal mode
equations differ in structure from the wavymode equations, on
account of the constraints of symmetry upon electron dynam-
ics. This differs from the corresponding case for geophysical
fluids, and renders zonalmodes evenmore important in plasma

systems. Symmetry precludes an adiabatic electron response
for zonal modes. Thus they are benign repositories for fluc-
tuation energy. Conversion of energy to zonal structures
reduces transport and improves confinement. The interaction
of zonal and wavy components of DW-ZFT has been encap-
sulated by an extended predator–prey model [4], which also
includes profile structure evolution. Zonal shear flows and pro-
file corrugations have been shown to arrange themselves into
long lived quasi-periodic patterns, known as staircases [5–7].
Staircase formation is a striking consequence of inhomo-
geneous mixing in real space. A theory of DW-ZFT should
address both the k-space and real space manifestations of the
dynamics.

Zonal modes have been intensively studied by theoret-
ical work [1–3, 8–33], simulations [34–43] and experiment
[44–58]. An uncountable infinity of color figures have been
generated. Interestingly though, nearly all theoretical models
of zonal flow generation divides cleanly into:
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(a) calculation of the ZF dielectric, or screening response,
with occasional mention of excitation by wavy component
beat noise [10, 12]. Indeed, the details and consequences
of noise generation have received only cursory examina-
tion. This calculation ignores modulational mechanisms;

(b) modulational stability calculations, which consider the
response of a pre-existing gas of drift waves to infinites-
imal test shears or profile corrugations, but ignore noise
emission.

Clearly, this separation is artificial and indeed incorrect.
A unified theory of zonal modes is needed. Such a theory
must necessarily be formulated at the level of coupled spec-
trum evolution equations [9, 59], which treat the intrinsically
comparable effects of noise emission and coherent response
(i.e. turbulent diffusive scattering, where the diffusivity can be
negative) on an equal footing. This paper presents the requisite
unified theory.

In this paper, we derive coupled spectral equations for zonal
flows, density corrugations and the wavy turbulence kinetic
energy and internal energy for DW-ZFT in the simple-yet-
prototypical Hasegawa–Wakatani model [60, 61]. To elimin-
ate the need to evolve the wavy cross-correlation spectrum

⟨nkϕ⋆k ⟩, we limit this study to the case where
k2∥v

2
th

ων ≡ α > 1. In
this limit the non-adiabatic electron response is dominated by
parallel diffusion, and is laminar. We compute the zonal flow
and zonal corrugation incoherent noise, determined by vor-

ticity advection
(⃗
ṽ · ∇⃗∇2

⊥ϕ̃
)
and density advection

(⃗
ṽ · ∇⃗ñ

)
,

respectively. The turbulent flow viscosity and density diffusiv-
ity set by the vorticity and density responses, respectively, are
also calculated. The analysis shows that the turbulent viscosity
can go negative for sufficiently steep energy spectra- ∂E∂kr < 0

and
∣∣∣ ∂E∂kr ∣∣∣< ∣∣∣ ∂E∂kr ∣∣∣crit. This is consistent with the prediction of

the wave kinetic theory, and is a condition for nonlocal trans-
fer of energy to large scales. It begs the question of how the
system will evolve—i.e. will the turbulence act to relax the
strong spectral gradient, thus ‘turning off’ the familiar neg-
ative viscosity phenomenon. The turbulent density diffusiv-
ity, however, is seen to be positive definite, suggesting that
density perturbations are mixed, and dissipated on small scale.
It’s important to note here that the turbulent diffusivity is a
measure of mixing only for the non-adiabatic density fluctu-

ations. Adiabatic fluctuations
(

δnk
n0

= eδϕk
Te

)
are unmixed, since

ẑ×∇⃗ϕ · ∇⃗n= 0 for them.
These developments in the basic physics have important

implications for the formation of zonal structures. Polariza-
tion beat noise seeds zonal potential at all kρi < 1 scales. If
the scale is modulationally unstable, this seeding results in
the growth of strong zonal shears, which then feed back on
the primary mode dynamics. This scenario is akin to adding
noise to an unstablemode. If the scale is modulationally stable,
a noise vs damping competition (akin to that in Brownian
motion, which leads to a balance of fluctuation and dissipation)
determines the ambient zonal flow levels. For weak damping,
these shears can grow quite large, thus rendering the question
of modulational instability moot. Note that the presence of

noise removes the threshold for zonal mode activity, thus res-
ulting in zonal flow excitation across a broad parameter range.

Corrugations, which are damped by turbulent particle diffu-
sion, also are determined by a noise vs diffusion balance. Thus
we see that confronting the DW-ZFT problem now requires
one to:

(a) to understand the interplay of noise seeding and negative
viscosity, both of which are due to advection of polariza-
tion charge;

(b) calculate both shearing-feedback dominated, and
fluctuation-dissipation type stationary states. Shearing
feedback can regulate the effect of noise excitation on
unstable modes;

(c) treat corrugations and flow shears on the same footing.
Corrugations can induce random refraction of the wavy
modes. The interplay of refraction, shear in E×B flow
and density gradient is determined by the zonal density—
vorticity (shear) cross correlation, which is calculated. The
importance of the zonal density—vorticity cross correla-
tion has not been appreciated previously;

(d) determine the self-consistent drift-wave spectrum (i.e. not
only intensity), and how it compares to the critical slope
spectrum of zonal mode dynamics.

In this paper, we present a complete, self-consistent study
of zonal mode dynamics. The zonal mode problem is well
studied, so it is incumbent upon us to state what is new in this
paper. Hence, the novel elements are:

(a) an analysis encompassing both noise generation, modula-
tional instability and their interaction, based upon a sys-
tematic spectral closure for zonal shears and corrugations;

(b) the discovery of the forward transfer of internal energy of

density corrugations∼
〈
|n/n0|2

〉
which occurs alongwith

the familiar inverse transfer of kinetic energy. The zonal
flows may exhibit negative viscosity phenomena, but cor-
rugations do not (i.e. diffusivity is positive!);

(c) the realization of the important implications of the zonal
cross-correlation

〈
n∇2

⊥ϕ
〉
which appear in spectral trans-

fer rates and which governs the phasing of density corrug-
ations and zonal shears. These can be correlated or anti-
correlated, depending upon the sign of

〈
n∇2

⊥ϕ
〉
;

(d) the re-evaluation of predator–prey and L→H model
dynamics in light of the role of zonal noise.

Most generally, corrugations can be viewed as real space
manifestation of the phase space zonal distribution function
and can be calculated from the velocity moments of the the
zonal phase space distribution function. Attempts along this
line has been made in the [62]. and a transport equation for
the zonal phase space distribution function has been derived.
However, such a gyro-kinetic description of corrugation has
produced no conclusive answer on modulational stability and
the dynamics of density and temperature corrugations.

New challenges abound in this classic problem!
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The theoretical developments discussed have important
practical implications for DW-ZFT evolution, including exten-
ded predator–prey models of the L→H transition. Nonlin-
ear noise excites zonal flows below the modulational instabil-
ity threshold, thus explaining the broad domain of zonal
mode activity. The hard growth/power threshold for zonal
flow onset, characteristic of zero noise models, disappears.
In L→H models, turbulence overshoot is consequently elim-
inated. The steepening of ∇P occurs at lower power, since
noise boosts the drive of zonal flows and so necessarily reduces
transport. Turbulence and zonal flow energies balance prior to
the steepening of∇P. An improved model of the L→H trans-
ition is discussed at length in this paper.

The remainder of this paper is arranged as follows.
Section 2 presents the drift wave—zonal flow system.
Section 3 discusses spectral evolution. Section 3.1 calculates
the induced diffusion of spectral kinetic energy and internal
energy. Section 3.2 presents spectral evolution of zonal intens-
ity. Section 3.3 discusses spectral evolution of density cor-
rugations. Section 3.4 calculates zonal cross-correlations—
a quantity heretofore not discussed. Section 4 contrasts the
familiar wave kinetic analyses with the spectrum evolution res-
ults. The predator–prey model is extended to include the non-
linear noise in section 5. The effect of noise on the L–H trans-
ition is addressed in section 6. Section 7 gives conclusions and
discussions.

2. Drift wave—zonal mode system

Here we present and discuss the basic model. We consider
a plane slab geometry with homogeneous, straight magnetic

field in the z direction
(
B⃗= Bẑ

)
and inhomogeneous dens-

ity n0(x). The ions are assumed cold and temperature gradi-
ent effects are ignored. The non-linear evolution of dissipative
drift wave turbulence is then described by the following 2-field
model, due to Hasegawa and Wakatani [60, 61].

d
dt
∇2

⊥ϕ̃+ ṽE · ∇⃗∇2
⊥ϕ=−χe∇2

∥

(
ϕ̃− ñ

)
−
{
ϕ̃,∇2

⊥ϕ̃
}
+µ∇2

⊥∇2
⊥ϕ̃ (1)

dñ
dt

+ ṽE ·
∇⃗n0
n0

=−χe∇2
∥

(
ϕ̃− ñ

)
−
{
ϕ̃, ñ
}
+Dn∇2

⊥ñ. (2)

The above equations (1) and (2) have been written in dimen-
sionless form. Potential and density are normalized as ñ=
δn/n0, ϕ̃= eδϕ/Te respectively. Time and space are normal-
ized as t=ωcit, x⊥ = x⊥/ρs. The normalized E×B velocity
is ṽE =

δvE
cs

= ẑ×∇⃗ϕ̃, χe = v2te/νeiΩi is electron parallel dif-

fusivity, vte =
√

2Te/me is electron thermal speed, µ is nor-
malized ion viscosity µ= µ0/ρ

2
sΩi and D is normalized col-

lisional particle diffusivity Dn = D0/ρ
2
sΩi. These equations

describe non-linear evolutions of vorticity fluctuation ∇2
⊥ϕ̃

and density fluctuation ñ which are coupled through parallel
electron diffusivity χe. The parallel wave length is assumed

to be k∥ ∼1/qR and perpendicular wavelength is k⊥ρs ∼ 1
so that k∥ ≪ k⊥ and the equations (1) and (2) describe a
quasi-two-dimensional system. In the low collisionality limit,
where ωk ≪ χek2∥, the electrons are adiabatic i.e. ñ= ϕ̃. Then
equations (1) and (2) reduce to the Hasegawa–Mima (H–M),
or the Rossby wave equation. In the strongly collisional limit,
ωk ≫ χek2∥, ñ and ϕ̃ are weakly coupled and evolve separately.
Equation (1), for vorticity, reduces to the 2D Navier–Stokes
Equation where the vorticity is an active scalar and advected
by the E×B velocity. Equation (2), for the density fluctuation,
reduces to a passive scalar equation where the density fluc-
tuation is advected by the same E×B velocity. Defining the
adiabaticity parameter α≡ χek2∥/ωk, the adiabatic regime cor-
responds to α≫ 1 and the hydrodynamic regime corresponds
to α≪ 1. The equations for zonal vorticity and zonal density
are obtained by zonal averaging (over the directions of sym-
metry) of the respective fluctuation equations. The zonal dens-
ity evolution is governed by

d
dt
n=− ∂

∂x
ṽExñ+Dn∇2

xn (3)

and the zonal vorticity dynamics is governed by

d
dt
∇2
xϕ=− ∂

∂x
ṽEx∇2

⊥ϕ̃+µ∇4
xϕ (4)

where the first term on the right hand side is the divergence
of the vorticity flux. The vorticity flux can be expressed as
divergence of Reynolds stress, using the Taylor identity i.e.

ṽEx∇2
⊥ϕ̃= ∂

∂x ṽExṽEy. The potential fluctuations are the drift
waves governed by the Hasegawa–Wakatani, model for sim-
plicity. The set of equations (1)–(4) constitute a self-consistent
model for the coupled drift wave—zonal mode system.

To determine the linear responses, linearize the above
equation and taking Fourier transform in the symmetry direc-
tions y and z. This yields the dissipative drift wave dispersion
relation

k2⊥ω
2
k + iωkα̂

(
1+ k2⊥

)
− iω⋆eα̂= 0 (5)

where α̂= χek2∥ and ω⋆e = (ρs/Ln)ky is the drift frequency
normalized by Ωci. The roots of the above dispersion relation
equation (5) are:

ωk =− i
2
α̂

(
1+

1
k2⊥

)
± i

2

{
α̂2

(
1+

1
k2⊥

)2

− 4iω⋆e
α̂

k2⊥

}1/2

.

(6)

In the two limiting cases mentioned above, simple expres-
sions for the real frequencies(ωrk) and growth rates(γk) of the
unstable modes are obtained. These are:

(a) the adiabatic regime (α > 1): where the real frequency
and the growth rate are given by

ωrk =
ω⋆e

1+ k2⊥
(7)

3
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and

γk =
k2⊥
α̂

ωr2k
1+ k2⊥

(8)

respectively. These modes are conventional drift waves;
(b) the hydrodynamic regime (α < 1): In this regime, the

growth rate and real frequency are equal, and are given
by

ωrk = sign(ky)

(
α̂ |ω⋆e|
2k2⊥

)1/2

(9)

γk =

(
α̂ |ω⋆e|
2k2⊥

)1/2

. (10)

3. Spectral evolution

Here we derive spectral equations for the zonal modes and the
wave fluctuation energy. Our motivation is to develop the most
general inclusive analysis of DW-ZFT. The H-W system in
spectral form reads(

∂

∂t
+µk2⊥ +

α̂k
k2⊥

)
k2⊥ϕk− α̂knk

=
1
2

∑
p⃗+q⃗=⃗k

ẑ · p⃗× q⃗
(
q2 − p2

)
ϕpϕq (11)

(
∂

∂t
+ α̂k

)
nk+(−α̂k+ iω⋆e)ϕk

=
1
2

∑
p⃗+q⃗=⃗k

ẑ · p⃗× q⃗(ϕpnq−ϕqnp) . (12)

It is straightforward to see that the mode coupling coefficients
M1
kpq = ẑ · p⃗× q⃗

(
q2 − p2

)
/k2⊥ and M2

kpq = ẑ · p⃗× q⃗ satisfy the
the detailed conservation conditions:

σQ1
1kM

1
kpq+σQ1

1pM
1
pqk+σQ1

1qM
1
qkp = 0; Q1 = (E,Z) (13)

and

σQ2
2kM

2
kpq+σQ2

2pM
2
pqk+σQ2

2qM
2
qkp = 3ẑ · p⃗× q⃗ (14)

where σQ1
1k = 1

2

(
k2⊥,k

4
⊥
)

and σQ2
2k = 1. These symmetry

properties guarantee that the polarization non-linear term
in equation (11) conserves kinetic energy E=

∑
kEk =∑

k
1
2k

2 |ϕk|2 and fluid enstrophy Z=
∑

kZk =
∑

k
1
2k

4 |ϕk|2,
and that the convective non-linear term in equation (12) con-
serves internal energy En =

∑
kEnk =

∑
k
1
2 |nk|

2. In purely
adiabatic limit α̂=∞, the density fluctuation is ñ= ϕ̃ and the
Hasegawa–Wakatani equations reduce to the H–M equation
[63].(

∂

∂t
+ iωk

)
ϕk =

1
2

∑
p⃗+q⃗=⃗k

ẑ · p⃗× q⃗
(
q2 − p2

)
1+ k2⊥

ϕpϕq. (15)

The mode coupling coefficient Mkpq = ẑ · p⃗× q⃗
(
q2 − p2

)
/(

1+ k2⊥
)
satisfy the detailed conservation condition:

σQk Mkpq+σQpMpqk+σQqMqkp = 0; Q= (E,Z) (16)

where σQk = 1
2

(
1+ k2⊥,

(
1+ k2⊥

)2)
. This property guar-

antees non-linear invariance of total energy E=
∑

kEk =∑
k

(
1+ k2

)
|ϕk|2 and total enstrophy Z=

∑
kZk =∑

k

(
1+ k2

)2 |ϕk|2 for the H–M system.
For the two-field drift wave turbulence model, the relevant

spectra are the kinetic energy spectrum
〈
|vk|2

〉
= k2

〈
|ϕ|2k
〉
,

the internal energy spectrum
〈
|nk|2

〉
and the cross-correlation

spectrum ⟨nkϕ⋆k ⟩. Note that the cross-spectrum is intimately
related to the flux i.e. Γn =

∑
k−iky ⟨nkϕ⋆k ⟩ etc. Thus the

wave cross-correlation ⟨nkϕ⋆k ⟩ may be thought of as a meas-
ure of alignment in drift wave turbulence, much like cross-

helicity
〈⃗
v · B⃗

〉
measures alignment in magnetohydrodynam-

ics (MHD) turbulence. A state of high normalized cross-
correlation is one where transport is small, and density mixing
or scattering is weak. Likewise, a state of low cross-correlation
could support stronger transport and mixing. Zonal fluctuation
cross-correlation, discussed later is of broader and different
significance. The evolution equation for the kinetic energy
spectra is obtained by multiplying the equation (11) by ϕ⋆k and
adding the resulting equation with the conjugate of equation
(11) multiplied by ϕk. Taking a statistical average (denoted by
the angular bracket ⟨⟩) of the resulting equation yields(

∂

∂t
+ 2µk2⊥ + 2

α̂k
k2⊥

)
k2⊥
〈
|ϕk|2

〉
− 2α̂kℜ⟨nkϕ⋆k ⟩

= ℜ
∑
p⃗+q⃗=⃗k

ẑ · p⃗× q⃗
(
q2 − p2

)
⟨ϕ⋆kϕpϕq⟩ . (17)

Similarly, the internal energy spectrum is obtained as(
∂

∂t
+ 2α̂k

)〈
|nk|2

〉
− 2α̂kℜ⟨nkϕ⋆k ⟩+ 2ω⋆eℑ⟨nkϕ⋆k ⟩

= ℜ
∑
p⃗+q⃗=⃗k

ẑ · p⃗× q⃗(⟨n⋆kϕpnq⟩− ⟨n⋆kϕqnp⟩) . (18)

The evolution equation for the cross correlation spectra is
obtained by multiplying the conjugate of equation (11) by nk
and adding the resulting equation to the equation (12) multi-
plied by ϕ⋆k , yielding:(

∂

∂t
+µk2⊥ +

α̂k
k2⊥

+ α̂k

)
k2⊥ ⟨nkϕ⋆k ⟩

− α̂k

[〈
|nk|2

〉
+ k2⊥

〈
|ϕk|2

〉]
+ iω⋆ek

2
⊥

〈
|ϕk|2

〉
=
∑
p⃗+q⃗=⃗k

ẑ · p⃗× q⃗
[(
q2 − p2

)〈
nkϕ

⋆
pϕ

⋆
q

〉
+k2⊥ (⟨ϕ⋆kϕpnq⟩− ⟨ϕ⋆kϕqnp⟩)

]
. (19)

4
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The triplet correlations are determined by the phase coherency
of the three modes k⃗, p⃗, q⃗. To first order, in a state of turbu-
lence, this phase coherency is determined by the direct interac-
tion among these three modes in the presence of the stochastic
background of all other interactions. Denoting the perturbation
in ϕk due to this direct interaction by δϕk, the triad correlations
are approximated as

⟨ϕ⋆kϕpϕq⟩= ⟨δϕ⋆kϕpϕq⟩+ ⟨ϕ⋆k δϕpϕq⟩+ ⟨ϕ⋆kϕpδϕq⟩ . (20)

The first term on the right hand side in the above equation
ultimately leads to non-linear noise or incoherent emission as

δϕk ∼ ϕpϕq and so that ⟨δϕ⋆kϕpϕq⟩ ∼
〈
|ϕp|2

〉〈
|ϕq|2

〉
. Sim-

ilarly the remaining two terms on the right hand side ulti-
mately represents non-linear relaxation or coherent damping

as δϕp ∼ ϕkϕ
⋆
q and so that ⟨ϕ⋆k δϕpϕq⟩ ∼

〈
|ϕk|2

〉〈
|ϕq|2

〉
. The

perturbations δϕk and δnk are driven by the direct interaction
between modes p⃗ and q⃗:(

∂

∂t
+ ηk

)
k2⊥δϕk+ α̂k (δϕk− δnk) = S1k (21)

(
∂

∂t
+ ηk

)
δnk+ α̂kδnk+(−α̂k+ iω⋆e)δϕk = S2k (22)

where the source terms are given by

S1k = ẑ · p⃗× q⃗
(
q2 − p2

)
ϕpϕq (23)

S2k = ẑ · p⃗× q⃗(ϕpnq−ϕqnp) . (24)

The solutions of the beat mode equations (21) and (22) are
obtained as

δϕk =

ˆ t

−∞
dt ′e−(iωk+ηk)(t−t ′) [akS1k(t

′)+ bkS2k(t
′)] (25)

δnk =
ˆ t

−∞
dt ′e−(iωk+ηk)(t−t ′) [ckS1k(t

′)+ dkS2k(t
′)] (26)

where only the dominant virtual mode eigenvalues are retained
for simplicity. Heavily damped modes make a small contribu-
tion to mediating spectral transfer. The coupling coefficients
are given by

ak =

(
1− iωk

α̂k

)
bk; bk =

1
det(Ak)

(27)

ck =

(
1− iωkk2

α̂k

)
ak; dk =

(
1− iωkk2

α̂k

)
bk (28)

where ωk is the frequency of the linear eigenmode and det(Ak)
is given by

det(Ak) =

√
(1+ k2)2 − 4iω⋆e

(
k2

α̂k

)
. (29)

In the following the triad correlations are obtained. Using the
expression for δϕk from equation (25) the incoherent part of
the potential triad correlation becomes

⟨δϕ⋆kϕpϕq⟩=
ˆ t

−∞
dt′e−(−iωk+ηk)(t−t′) [a⋆k ⟨S⋆1k(t′)ϕp(t)ϕq(t)⟩

+b⋆k ⟨S⋆2k(t′)ϕp(t)ϕq(t)⟩]

where

⟨S⋆1k(t′)ϕp(t)ϕq(t)⟩
= ẑ · p⃗× q⃗

(
q2 − p2

)〈
ϕ⋆p(t

′)ϕ⋆q(t
′)ϕp(t)ϕq(t)

〉
= ẑ · p⃗× q⃗

(
q2 − p2

)〈
ϕ⋆p(t

′)ϕp(t)
〉〈
ϕ⋆q(t

′)ϕq(t)
〉

and

⟨S⋆2k(t′)ϕp(t)ϕq(t)⟩
= ẑ · p⃗× q⃗

[〈
ϕ⋆p(t

′)n⋆q(t
′)ϕp(t)ϕq(t)

〉
−
〈
ϕ⋆q(t

′)n⋆p(t
′)ϕp(t)ϕq(t)

〉]
= ẑ · p⃗× q⃗

[〈
ϕ⋆p(t

′)ϕp(t)
〉〈
n⋆q(t

′)ϕq(t)
〉

−
〈
ϕ⋆q(t

′)ϕq(t)
〉〈
n⋆p(t

′)ϕp(t)
〉]
.

Note that the 4th order moment-correlation has been written
in terms of products of two second order moment using the
assumption of quasi-normal (Gaussian) fluctuation statistics.
Similarly using the expression for the potential perturbation
δϕp the coherent part of the triad correlation becomes

⟨ϕ⋆k δϕpϕq⟩=
ˆ t

−∞
dt′e−(iωp+ηp)(t−t′) [ap ⟨ϕ⋆k (t)S1p(t′)ϕq(t)⟩

+bp ⟨ϕ⋆k (t)S2p(t′)ϕq(t)⟩]

where

⟨ϕ⋆k (t)S1p(t′)ϕq(t)⟩

= ẑ · k⃗× q⃗
(
k2 − q2

)〈
ϕ⋆k (t)ϕ

⋆
q(t

′)ϕk(t
′)ϕq(t)

〉
= ẑ · p⃗× q⃗

(
k2 − q2

)〈
ϕ⋆q(t

′)ϕq(t)
〉
⟨ϕ⋆k (t)ϕk(t′)⟩

and

⟨ϕ⋆k (t)S2p(t′)ϕq(t)⟩

=−ẑ · k⃗× q⃗
[〈
ϕk(t

′)n⋆q(t
′)ϕ⋆k (t)ϕq(t)

〉
−
〈
ϕ⋆q(t

′)nk(t
′)ϕ⋆k (t)ϕq(t)

〉]
=−ẑ · p⃗× q⃗

[
⟨ϕk(t′)ϕ⋆k (t)⟩

〈
n⋆q(t

′)ϕq(t)
〉

−
〈
ϕ⋆q(t

′)ϕq(t)
〉
⟨nk(t′)ϕ⋆k (t)⟩

]
.

Expressing two-time correlations as follows

⟨ϕ⋆k (t ′)ϕk(t)⟩= ⟨ϕ⋆k (t)ϕk(t)⟩e−(iωk+ηk)(t−t ′) (30)

⟨n⋆k (t ′)nk(t)⟩= ⟨n⋆k (t)nk(t)⟩e−(iωk+ηk)(t−t ′) (31)

⟨ϕ⋆k (t ′)nk(t)⟩= ⟨ϕ⋆k (t)nk(t)⟩e−(iωk+ηk)(t−t ′) (32)
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yields the incoherent emission part as

⟨δϕ⋆kϕpϕq⟩=Θkpq (ẑ · p⃗× q⃗)

×
[(
q2 − p2

)
a⋆k
〈
|ϕp|2

〉〈
|ϕq|2

〉
+b⋆k

(〈
|ϕp|2

〉〈
n⋆qϕq

〉
−
〈
|ϕq|2

〉〈
n⋆pϕp

〉)]
(33)

where the triad interaction time is

Θkpq =
1

i(ωp+ωq−ωk)+ ηk+ ηp+ ηq
.

Here we note:

Θ
(r)
kpq =

|ηk+ ηp+ ηq|
(ωp+ωq−ωk)

2
+ |ηk+ ηp+ ηq|2

=

{
πδ (ωp+ωq−ωk) forη < freq.mismatch

1
|ηk+ηp+ηq| forη > freq.mismatch.

Note causality requires the absolute value Θ transitions from
its ‘weak’ to ‘strong’ turbulence for mismatch frequency
ωMM ∼ ωk ∼ ηk, which defines the effective Rhines scales [41]
k2⊥ρ

2
sωk ∼ ηk. Note that the Kubo number in this analysis

is Ku = ṽτac/∆⩽ 1. Here ṽ is the fluctuation velocity, τ ac
is the autocorrelation time, and ∆ is the fluctuation scale.
This analysis is a closure theory, which encompasses both
‘weak’ and ‘strong’ turbulence limits. For weak turbulence
Ku ∼ ṽτac/∆< 1, as ṽ< v⋆ (i.e. weak). For strong turbulence

τac ∼ η−1
k and ηk ∼

(
k2ṽ2

)1/2
so Ku∼ 1/k∆∼ 1. The coherent

part of the triplet correlation becomes

⟨ϕ⋆k δϕpϕq⟩=Θkpq (ẑ · p⃗× q⃗)

×
[
ap
(
k2 − q2

)〈
|ϕq|2

〉〈
|ϕk|2

〉
+bp

(〈
|ϕq|2

〉
⟨nkϕ⋆k ⟩−

〈
|ϕk|2

〉〈
n⋆qϕq

〉)]
.

(34)

Finally the spectral intensity equation becomes:(
∂

∂t
+µk2⊥ + 2

α̂k
k2⊥

)
k2⊥
〈
|ϕk|2

〉
− 2α̂kℜ⟨nkϕ⋆k ⟩

= ℜ
∑
p⃗+q⃗=⃗k

(ẑ · p⃗× q⃗)2
(
q2 − p2

)
Θkpq

×
[
2ap
(
k2 − q2

)〈
|ϕq|2

〉〈
|ϕk|2

〉
+2bp

(〈
|ϕq|2

〉
⟨nkϕ⋆k ⟩−

〈
|ϕk|2

〉〈
n⋆qϕq

〉)]
+ ℜ

∑
p⃗+q⃗=⃗k

(ẑ · p⃗× q⃗)2
(
q2 − p2

)
Θkpq

[
a−k

(
q2 − p2

)
×
〈
|ϕp|2

〉〈
|ϕq|2

〉
+ b−k

(〈
|ϕp|2

〉〈
n⋆qϕq

〉
−
〈
|ϕq|2

〉〈
n⋆pϕp

〉)]
. (35)

The above equation can be written as

(
∂

∂t
+ 2µk2⊥

)〈
|ϕk|2

〉
+

2α̂k
k2⊥

1− ℜ⟨nkϕ⋆k ⟩〈
|ϕk|2

〉
〈|ϕk|2〉

+ 2ηk
〈
|ϕk|2

〉
= Fk (36)

where the eddy damping rate is

ηk =−ℜ
∑
p⃗+q⃗=⃗k

1
k2⊥

(ẑ · p⃗× q⃗)2
(
q2 − p2

)
Θkpq

×

ap (k2 − q2
)
+ bp

 ⟨nkϕ⋆k ⟩〈
|ϕk|2

〉 −
〈
n⋆qϕq

〉〈
|ϕq|2

〉
〈|ϕq|2〉

(37)

and the non-linear noise term is

Fk = ℜ
∑
p⃗+q⃗=⃗k

1
k2⊥

(ẑ · p⃗× q⃗)2
(
q2 − p2

)
Θkpq

×

a−k
(
q2 − p2

)
+ b−k

 〈n⋆qϕq〉〈
|ϕq|2

〉 −
〈
n⋆pϕp

〉〈
|ϕp|2

〉


×
〈
|ϕp|2

〉〈
|ϕq|2

〉
. (38)

From the above equations, one can see that the non-linear
transfer of turbulent kinetic energy is dominated by the non-
local interactions (i.e. p⃗ ̸= q⃗), due to presence of the factor(
q2 − p2

)
. It is also straight forward to see that the cross cor-

relation terms exactly cancel i.e.

⟨nkϕ⋆k ⟩〈
|ϕk|2

〉 −
〈
n⋆qϕq

〉〈
|ϕq|2

〉 = 0

and 〈
n⋆qϕq

〉〈
|ϕq|2

〉 −
〈
n⋆pϕp

〉〈
|ϕp|2

〉 = 0

in the strongly adiabatic regime α → ∞, so the above spectral
equation reduces to that for the H–M equation.

Similarly, it straightforward to arrive at the following evol-
ution equation for density fluctuation spectrum(
∂

∂t
+2Dnk

2
⊥+2α̂k

)〈
|nk|2

〉
−2α̂kℜ⟨nkϕ⋆k ⟩+2ω⋆eℑ⟨nkϕ⋆k ⟩

= 2ℜ
∑
p⃗+q⃗=⃗k

(ẑ · p⃗× q⃗)2Θkpq
[
ap
(
k2 − q2

)
⟨n⋆kϕk⟩

〈
nqϕ

⋆
q

〉
+bp

(〈
nqϕ

⋆
q

〉〈
|nk|2

〉
−⟨n⋆kϕk⟩

〈
|nq|2

〉)]
+ 2ℜ

∑
p⃗+q⃗=⃗k

(ẑ · p⃗× q⃗)2Θkpq

[
cq
(
p2 − k2

)
⟨n⋆kϕk⟩

〈
|ϕp|2

〉
+dq

(
⟨n⋆kϕk⟩

〈
n⋆pϕp

〉
−
〈
|nk|2

〉〈
|ϕp|2

〉)]
6
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+ℜ
∑
p⃗+q⃗=⃗k

(ẑ · p⃗× q⃗)2Θkpqc
⋆
k

(
q2 − p2

)(〈
nqϕ

⋆
q

〉〈
|ϕp|2

〉
−
〈
npϕ

⋆
p

〉〈
|ϕq|2

〉)
+ℜ

∑
p⃗+q⃗=⃗k

(ẑ · p⃗× q⃗)2Θkpq2d
⋆
k(〈

|nq|2
〉〈

|ϕp|2
〉〈
nqϕ

⋆
q

〉〈
n⋆pϕp

〉)
. (39)

The first and second terms on the right hand side res-
ult from the coherent parts, (⟨n⋆k δϕpnq⟩− ⟨n⋆k δϕqnp⟩) and
(⟨n⋆kϕpδnq⟩− ⟨n⋆kϕqδnp⟩) respectively, of the triad correla-
tion on the right hand side of equation (18). The last two
terms on the right hand side result from the incoherent part,
(⟨δn⋆kϕpnq⟩− ⟨δn⋆kϕqnp⟩), of the triad correlation. It is easy to
verify that in the strongly adiabatic limit α̂ → ∞, a= b= c=
d and nk = ϕk, which makes the transfer function (the entire
right hand side) vanish. Equation (39) reveals that transfer of
internal energy fluctuation is dominated by local interactions
(p∼ q).

In the purely adiabatic limit α̂ → ∞, the equations (35) and
(39) reduce to the spectral equation for turbulence intensity of
H–M system:

∂

∂t

〈
|ϕk|2

〉
+ 2ηk

〈
|ϕk|2

〉
= Fk. (40)

Here the eddy damping rate is

ηk =−ℜ
∑
p⃗+q⃗=⃗k

MkpqMpqkΘkpq

〈
|ϕq|2

〉
(41)

and the incoherent noise is

Fk = ℜ
∑
p⃗+q⃗=⃗k

M2
kpqΘkpq

〈
|ϕp|2

〉〈
|ϕq|2

〉
. (42)

3.1. Induced diffusion of non-linear invariants by zonal modes

In this section, we calculate the effect of zonal modes on
wavy scales. The dominance of nonlocal spectral transfer
and the accumulation of energy in the natural repository of
zonal modes suggest that the direct effect of zonal modes
is of primary importance. This is calculated without further
assumptions. In the following, we show how zonal modes
induce diffusion of quadratic non-linear invariants in kx-space.

3.1.1. Induced diffusion of spectral kinetic energy and internal
energy at α̂ ̸=∞. In non-adiabatic (α̂ ̸=∞) case, the non-
linear invariants are kinetic energy, internal energy, enstrophy,
and cross-helicity. We show that the turbulence kinetic energy
diffuses in kx-space under the influence of zonal modes. This
clarifies a key result of adiabatic theory. Assume that q⃗ is a
zonal wave number. For convenience, we re-write the coherent
and the noise terms on the right hand side of the spectral kinetic
energy equation (35) as

T(1)ϕk ≡ℜ
∑
p⃗+q⃗=⃗k

(ẑ · p⃗× q⃗)2
(
q2 − p2

)
Θkpq2ap

(
k2 − q2

)

×
〈
|ϕq|2

〉〈
|ϕk|2

〉
+ℜ

∑
p⃗+q⃗=⃗k

(ẑ · p⃗× q⃗)2
(
q2 − p2

)
Θkpqa

⋆
k

(
q2 − p2

)
×
〈
|ϕp|2

〉〈
|ϕq|2

〉

T(2)ϕk ≡ℜ
∑
p⃗+q⃗=⃗k

(ẑ · p⃗× q⃗)2
(
q2 − p2

)
Θkpq2bp

(〈
|ϕq|2

〉
⟨nkϕ⋆k ⟩

−
〈
|ϕk|2

〉〈
n⋆qϕq

〉)
+ℜ

∑
p⃗+q⃗=⃗k

(ẑ · p⃗× q⃗)2
(
q2 − p2

)
Θkpqb

⋆
k

(〈
|ϕp|2

〉〈
n⋆qϕq

〉
−
〈
|ϕq|2

〉〈
n⋆pϕp

〉)
.

Using the detailed balance equation (13) for the kinetic energy

Ek = 1
2k

2
〈
|ϕ|2k
〉
, T(1)ϕk can be expressed as

T(1)ϕk = ℜ
∑
p⃗+q⃗=⃗k

(ẑ · p⃗× q⃗)2
(
q2 − p2

)
×
(
k2 − q2

)
EqΘ

E
kpq

[
aEpEk− aE−kEp

]
(43)

where now ΘE
kpq =

8Θkpq

k2⊥p
2
⊥q

2
⊥

and aEk =
1
2k

2
⊥ak. Similarly, ignor-

ing the zonal density potential correlation
〈
n⋆qϕq

〉
, T(2)ϕk can be

expressed as

T(2)ϕk = ℜ
∑
p⃗+q⃗=⃗k

(ẑ · p⃗× q⃗)2
(
q2 − p2

)
EqΘ

E
kpq

×
[
bEpRnkEk− bE−kR

⋆
npEp

]
. (44)

Neglect of zonal correlation can be justified in case of evol-
ution for α > 1. Here we focus in detail on the physics pro-
cesses. Now, as shown in appendix A, expanding T(1)ϕk and T(2)ϕk

around p⃗= k⃗ and retaining terms up to toO(q4x) yields the fol-
lowing,

T(1)ϕk =
∂

∂kx

[∑
q

1
2
k2yk

4q4xEqΘ
Er
kkq

(
aErk

∂Ek
∂kx

− ∂aErk
∂kx

Ek

)]

=
∂

∂kx

[∑
q

4k2y

(
k
k⊥

)4

q2xEqΘ
(r)
kkq

(
aErk

∂Ek
∂kx

− ∂aErk
∂kx

Ek

)]
(45)

and

T(2)ϕk =
1
k2

∂

∂kx

[∑
q

1
2
k2yk

4q4xEqΘ
Er
kkq

×
(
bEk

∂

∂kx
(RnkEk)−

∂bEk
∂kx

RnkEk

)(r)
]

=
1
k2

∂

∂kx

[∑
q

2k2y

(
k
k⊥

)4

q2xEqΘ
(r)
kkq

7
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×
(
bEk

∂

∂kx
k2 ⟨nkϕ⋆k ⟩−

∂bEk
∂kx

k2 ⟨nkϕ⋆k ⟩
)(r)

]
. (46)

HereΘEr
kkq = ℜΘE

kkq, a
Er
k = ℜaEk and Eq refers to kinetic energy

of large scales. Equation (45) shows that spectral turbulence
kinetic energy Ek is convected and diffused in k-space by by
large scale straining due to zonal shear kinetic energy q2xEq.

The sign of the convection speed depends on the sign of ∂aErk
∂kx

.

It turns out that ∂aErk
∂kx

< 0 hence, the sign of the convection

speed is positive.Θ(r)
kkq sets the strain coherence time. Equation

(46) has structure of diffusion of spectral cross-correlation
k2 ⟨nkϕ⋆k ⟩. This shows that the diffusion of spectral kinetic
energy is coupled to the diffusion of spectral cross-correlation.
In fact, all non-linear invariants can be shown to diffuse in k-
space by zonal mode scattering. Ignoring the zonal-cross cor-
relation

〈
n⋆qϕq

〉
, it is convenient to split the internal energy

transfer function into:

T(1)nk = 2ℜ
∑
p⃗+q⃗=⃗k

(ẑ · p⃗× q⃗)2
〈
|ϕq|2

〉
Θkpq

×
[
d⋆k
〈
|np|2

〉
− dp

〈
|nk|2

〉]

T(2)nk = 2ℜ
∑
p⃗+q⃗=⃗k

(ẑ · p⃗× q⃗)2
〈
|ϕq|2

〉
Θkpq

[(
q2 − k2

)
cp ⟨n⋆kϕk⟩

−
(
q2 − p2

)
c⋆k
〈
npϕ

⋆
p

〉]

T(3)nk = 2ℜ
∑
p⃗+q⃗=⃗k

(ẑ · p⃗× q⃗)2Θkpq

[
−bp ⟨n⋆kϕk⟩

〈
|nq|2

〉]
.

Now, as shown in appendix B, expanding T(1)nk and T(2)nk around
p⃗= k⃗ and retaining terms up to to O(q4x) yields the following,

T(1)nk =
∂

∂kx

[∑
q

k2yq
4
x

〈
|ϕq|2

〉
Θ

(r)
kkq

×
(
drk

∂

∂kx

〈
|nk|2

〉
− ∂drk
∂kx

〈
|nk|2

〉)]
(47)

T(2)nk =
∂

∂kx

[∑
q

k2yq
4
x

〈
|ϕq|2

〉
Θ

(r)
kkq

×
(
c⋆k

∂

∂kx
k2 ⟨nkϕ⋆k ⟩−

∂ck
∂kx

k2 ⟨n⋆kϕk⟩
)(r)

]
. (48)

Here q4x
〈
|ϕq|2

〉
is energy associated with zonal velocity

shear—i.e zonal vorticity. Equation (47) shows that spec-
tral internal energy is convected and diffused in k-space by
mean square zonal velocity shear. The sign of the convec-
tion speed depends on the sign of ∂drk

∂kx
. It can be checked that

∂drk
∂kx

< 0, and hence, the sign if the convection speed is posit-
ive. Again, equation (48) has structure of diffusion of spectral
cross-correlation k2 ⟨nkϕ⋆k ⟩. This shows that the diffusion of
spectral internal energy is coupled to the diffusion of spectral
cross-helicity.

3.1.2. Induced diffusion of spectral total energy and enstrophy
at α̂=∞. Let’s define a generalized invariant Qk =

σQk

〈
|ϕk|2

〉
, where Q= (E,Z). Then the spectral equation for

Qk becomes:

∂Qk

∂t
= 2

∑
p⃗+q⃗=⃗k

MQ
kM

Q
pΘ

Q
kpqQqQk+

∑
p⃗+q⃗=⃗k

∣∣∣MQ
k

∣∣∣2ΘQ
kpqQpQq

(49)

where MQ
k = σQk Mkpq etc and ΘQ

kpq = ℜΘkpq/σ
Q
k σ

Q
p σ

Q
q . Using

the detailed balance equation (16) the non-linear transfer func-
tion can be reduced to

Tk = 2
∑
p⃗+q⃗=⃗k

MQ
kM

Q
pΘ

Q
kpqQq (Qk−Qp)

= 2
∑
q⃗

k2yq
2
x
σQk

1+ k2
(
q2 − p2

) σQk
1+ p2

×
(
k2 − q2

)
ΘQ
kpqQq (Qk−Qp) . (50)

Assume that q⃗ is a zonal wave number. As shown in the
appendix C, expanding around p⃗= k⃗ and retaining terms up
to to O(q4x) yields the following,

Tk =
∂

∂kx

∑
q

k2yq
4
xQqk

4

(
σQk

1+ k2

)2

ΘQ
kpq

∂Qk

∂kx

 , (51)

where Qq can be either zonal kinetic energy or zonal
enstrophy. This shows that in the pure adiabatic limit, all non-
linear invariants are diffused in kx-space by mean square zonal
velocity shear.

3.2. Spectral evolution of zonal intensity

Here we calculate the spectral evolution equation of zonal kin-
etic energy—i.e. the energy of zonal flows. This analysis elu-
cidates the fundamental mechanisms of zonal flow excitation,
without further assumption. In particular, no explicit appeal
to the adiabatic approximation is invoked. For zonal mode
ky = k∥ = 0, hence the kinetic energy spectrum equation (17)
for the zonal mode becomes(

∂

∂t
+ 2µk2⊥

)
k2⊥
〈
|ϕk|2

〉
=

ℜ
∑
k⃗=p⃗+q⃗

ẑ · p⃗× q⃗
(
q2 − p2

)
⟨ϕ⋆kϕpϕq⟩ . (52)

Now the triplet correlations are approximated as

⟨ϕ⋆kϕpϕq⟩= ⟨δϕ⋆kϕpϕq⟩+ ⟨ϕ⋆k δϕpϕq⟩+ ⟨ϕ⋆kϕpδϕq⟩ . (53)

8
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The zonal perturbation δϕk is driven by the beat interaction
between modes p⃗ and q⃗:(

∂

∂t
+ ηk

)
k2xδϕk = S1k (54)

where S1k is same as given in equation (23). The solution of
the zonal beat mode equation (54) is

δϕk =
1
k2x

ˆ t

−∞
dt ′e−ηk(t−t ′)S1k(t

′). (55)

Then the incoherent part of the triplet correlation becomes

⟨δϕ⋆kϕpϕq⟩=
1
k2x

ˆ t

−∞
dt′e−ηk(t−t′) ⟨S⋆1k(t′)ϕp(t)ϕq(t)⟩

=Θkpq
1
k2x
ẑ · p⃗× q⃗

(
q2 − p2

)〈
|ϕp|2

〉〈
|ϕq|2

〉
where the triad interaction time is

Θkpq =
1

i(ωp+ωq)+ ηk+ ηp+ ηq
. (56)

It is easy to see that the coherent part of the triplet correlation
is same as obtained in equation (34), with the expression for
Θkpq given by equation (56). Hence the zonal spectral intensity
equation becomes:(
∂

∂t
+2µk2x

)〈
|ϕk|2

〉
+2η(r)1k

〈
|ϕk|2

〉
+ℜ [2η2k ⟨nkϕ⋆k ⟩] = Fϕk.

(57)

In the above equation, the second term on the left proportional
to zonal intensity represents non-linear damping of zonal flow
with the damping rate

η
(r)
1k =−ℜ

∑
k⃗=p⃗+q⃗

1
k2x

(ẑ · p⃗× q⃗)2
(
q2 − p2

)
Θkpq

×

ap (k2 − q2
)
− bp

〈
n⋆qϕq

〉〈
|ϕq|2

〉
〈|ϕq|2〉 .

The second term on the left hand side shows coupling to zonal
cross correlation ⟨nkϕ⋆k ⟩ with the cross coupling coefficient
given by

η2k =−
∑
k⃗=p⃗+q⃗

1
k2x

(ẑ · p⃗× q⃗)2
(
q2 − p2

)
Θkpqbp

〈
|ϕq|2

〉
.

This is a novel effect! Finally, the term on the right hand side
is the zonal non-linear noise:

Fϕk = ℜ
∑
k⃗=p⃗+q⃗

1

(k2x)
2 (ẑ · p⃗× q⃗)2

(
q2 − p2

)2
Θkpq

×
〈
|ϕp|2

〉〈
|ϕq|2

〉
. (58)

Note that the zonal noise term here is exactly the same as the
zonal noise term for the H–M equation and is positive defin-
ite. It is determined by the advection of vorticity. However, the
eddy damping term is different from the corresponding H–M
case due to non-adiabaticity of electrons. The electron non-
adiabaticity parameter enters through the coupling paramet-
ers ap, bp, the turbulent density potential correlation

〈
n⋆qϕq

〉
and the triad interaction time Θkpq. In the following we use
the linear density-potential response relation for wavy modes
to simplify

〈
n⋆qϕq

〉
correlations, so that

〈
n⋆qϕq

〉
= R⋆

nqIq. This
is defensible only for the α > 1 regime, where density and
potential fluctuations are strongly correlated and the density
response is laminar. We leave the zonal density potential cor-
relation for later discussion—i.e. ⟨nkϕ⋆k ⟩ appears explicitly in
the theory. Using k2 ≪ q2 and expanding the triad interaction
time Θkpq around p⃗=−q⃗

Θ
(r)
kpq ≈Θ

(r)
k,−q,q+ k⃗ ·

∂Θ
(r)
kpq

∂p⃗
|⃗p=−q⃗ =Θ

(r)
k,−q,q−

k⃗
2
·
∂Θ

(r)
k,−q,q

∂q⃗
(59)

the non-linear damping rate is seen to be:

η
(r)
1k =−

∑
q⃗

k2rq
2
y

(
Θ

(r)
k,−q,q+ qx

∂Θ
(r)
k,−q,q

∂qx

)

×
(
a−qq

2 + b−qR
⋆
nq

)(r)
Iq

=−
∑
q⃗

∂

∂qx

[
k2xq

2
yqxΘ

(r)
k,−q,q

(
a−qq

2 + b−qR
⋆
nq

)(r)
Iq
]

+
∑
q⃗

k2xq
2
yΘ

(r)
k,−q,qqx

∂

∂qx

[(
a−qq

2 + b−qR
⋆
nq

)(r)
Iq
]
(60)

where the first (surface) term vanishes. So the general expres-
sion for the non-linear damping rate becomes

η
(r)
1k =

∑
q⃗

k2xq
2
yΘ

(r)
k,−q,qqx

∂

∂qx

[(
a−qq

2 + b−qR
⋆
nq

)(r)
Iq
]
.

(61)

Since, ℜ [η2k ⟨nkϕ⋆k ⟩] = η
(r)
2k ⟨nkϕ⋆k ⟩

(r) − η
(i)
2k ⟨nkϕ⋆k ⟩

(i), one
needs to evaluate both real and imaginary parts of the cross-
coefficient ηzonal2k . Using the above expansion procedure, the
real part of η2k becomes

η
(r)
2k =−

∑
q⃗

k2xq
2
yΘ

(r)
k,−q,qqx

∂

∂qx

[
b(r)−qIq

]
(62)

and the imaginary part becomes

η
(i)
2k =−

∑
q⃗

k2xq
2
yΘ

(r)
k,−q,qqx

∂

∂qx

[
b(i)−qIq

]
= 0. (63)

Note that η(i)2k = 0 due to the qy-symmetry of b(i)q —i.e. it is odd

in qy. This means that only ⟨nkϕ⋆k ⟩
(r)—i.e. the real part of the

9
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zonal cross-spectrum affects the evolution of zonal intensity.
The zonal noise term can be reduced to

Fϕk =
∑
q

4q2yq
2
xΘ

(r)
k,−q,qI−q(t)Iq(t)+O(k2x/q

2
x)

≈ 4
∑
q

Π2
qΘ

(r)
k,−q,q (64)

where Πq = qyqxIq is spectral form of Reynolds stress.

3.2.1. Adiabatic regime ωq < α̂q. The linear density poten-
tial response function, in the weakly adiabatic regime can be
reduced to

Rnq =

(
1− i

ω⋆e

α̂q

)(
1− i

ω

α̂q

)−1

= 1+
q4⊥

1+ q2⊥

1
α2
q
− iq2⊥
αq

+O
(

1
α3
q

)
. (65)

The coupling parameters in the adiabatic regime become

aq =

(
1− i

αq
+

1
1+ q2

q2⊥
α2
q

)
bq (66)

bq =
1

1+ q2

(
1+ i

2
1+ q2

q2

αq

)
+O

(
1
α2
q

)
. (67)

Using the expression for Rq in the adiabatic regime, the non-
linear zonal damping rate becomes

η
(r)
1k =

∑
q

k2xq
2
yΘ

(r)
k,−q,qqx

∂

∂qx

[(
1− 2q4⊥(

1+ q2⊥
)2 1
α2
q

)
Iq

]
.

(68)

This shows that the non-linear damping of zonal flow is neg-
ative when the turbulence intensity spectra satisfies ∂Iq

∂qr
< 0,

which is usually the case. In this case, negative viscosity res-
ults i.e. η(r)1k < 0 and ∼ k2x , symptomatic of transfer to large
scales by negative viscosity. The total growth Gk of zonal flows
is determined by η(r)1k and the linear damping µk2x , so, Gk =
−η1k−µk2x . Gk defines a critical spectral slope for marginal-
ity to modulational instability. It is also clear that the zonal
growth rate is maximum for the strongly adiabatic regime,
when αq → ∞. This suggests that non-adiabatic density fluc-
tuations inhibit the inverse transfer of energy to zonal flows.

The cross-coefficient η(r)2k is independent of α since b(r)q
(from equation (67)) is independent ofα. Hence, η(r)2k is always
positive for negative spectral slope. This means that the zonal
cross correlation can cause either forward or inverse transfer of
energy, depending on the sign of the cross-correlation ⟨nkϕ⋆k ⟩,
i.e. the relative phase between zonal density and potential.

3.3. Spectral evolution of density corrugations

Here we calculate the generation of zonal density perturb-
ations by non-linear interaction of wavy modes. Note that
the mechanisms for zonal density (which is intrinsically non-
adiabatic) generation can not be presumed to be the same as for
zonal flows. For the zonal mode ky = k∥ = 0, hence the spec-
tral equation (18) for zonal internal energy/density corruga-
tions becomes(

∂

∂t
+ 2Dnk

2

)〈
|nk|2

〉
= ℜ

∑
p⃗+q⃗=⃗k

ẑ · p⃗× q⃗(⟨n⋆kϕpnq⟩

− ⟨n⋆kϕqnp⟩) . (69)

Now using the procedure outlined for the zonal flow energy
derivation, it is straightforward to arrive at the following
equation for the density corrugations intensity,(
∂

∂t
+2Dnk

2

)〈
|nk|2

〉
+2ζ(r)1k

〈
|nk|2

〉
+ℜ [2ζ2k ⟨n⋆kϕk⟩] = Fnk.

(70)

Here, the corrugations damping rate due to turbulent mixing is

ζ
(r)
1k = ℜ

∑
k⃗=p⃗+q⃗

Θkpq (ẑ · p⃗× q⃗)2
[
dp
〈
ϕqϕ

⋆
q

〉
− bp

〈
ϕ⋆qnq

〉]
,

the coefficient of coupling to zonal cross correlation is

ζ2k =
∑
k⃗=p⃗+q⃗

Θkpq (ẑ · p⃗× q⃗)2
[
ap
(
q2 − k2

)〈
ϕ⋆qnq

〉
+bp

〈
n⋆qnq

〉
+ cq

(
k2 − p2

)〈
ϕpϕ

⋆
p

〉
− dq

〈
ϕpn

⋆
p

〉]
and the noise is

Fnk = 2ℜ
∑
k⃗=p⃗+q⃗

Θkpq (ẑ · p⃗× q⃗)2
[〈
ϕ⋆pϕp

〉〈
n⋆qnq

〉
−
〈
ϕ⋆qnq

〉〈
n⋆pϕp

〉]
.

The corrugations damping and the zonal cross-correlation
result from the coherent parts, (⟨n⋆k δϕpnq⟩− ⟨n⋆k δϕqnp⟩) and
(⟨n⋆kϕpδnq⟩− ⟨n⋆kϕqδnp⟩), of the triad correlation on the right
hand side of equation (69). The noise term Fnϕ results from
the incoherent part, (⟨δn⋆kϕpnq⟩− ⟨δn⋆kϕqnp⟩), of the triad cor-
relation. Clearly, like zonal flow energy, the evolution of cor-
rugation intensity is dynamically coupled to the zonal cross-
correlation spectrum. Now, assuming linear density potential
response for the turbulent density potential correlations i.e.〈
ϕ⋆qnq

〉
= RnqIq and using the fact that k2 ≪ q2 and expand-

ing around p⃗=−q⃗ yields the damping rate:

ζ
(r)
1k = ℜ

∑
q⃗

Θk,−q,qk
2
xq

2
y [d−q− b−qRnq] Iq.

Similarly, the cross-coefficient becomes

ζ2k =
∑
q⃗

Θk,−q,qk
2
xq

2
y

[
q2
(
a⋆qRq− cq

)
+ b⋆q |Rnq|

2 − dqRnq
]
Iq.

10
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In general, this is a complex quantity. But, using the qy sym-
metry properties of the coefficients aq, bq, cq, dq and Rq, it
straight-forward to show that imaginary part of ζ2k vanish i.e.
ζ
(i)
2k = 0. Hence ℜ [2ζ2k ⟨n⋆kϕk⟩] = ζ

(r)
2k ⟨n⋆kϕk⟩

(r). That is only
the real part of the zonal cross-spectrum couples to the cor-
rugation intensity evolution. Finally, the noise term reduces to

Fnk = 2ℜ
∑
q⃗

Θk,−q,qk
2
xq

2
y

[
|Rnq|2 −R2

nq

]
I2q

= 4
∑
q⃗

Θ
(r)
k,−q,qk

2
xq

2
y

(
Rinq
)2
I2q.

A negative damping rate would mean modulational growth of
density corrugations. We shall see, however, that this is not the
case. The noise term is always positive definite. It is important
to note that, in contrast to the case of zonal flows, bothmodula-
tional growth and the corrugation noise are independent of the
spectral slope. In contrast, the modulational growth of zonal
flow requires a negative spectral slope of kinetic energy.

3.3.1. Adiabatic regime ωq < q2∥χe. The coupling
parameters in the adiabatic regime become

bq =
1

1+ q2

(
1+ i

2
1+ q2

q2

αq

)
+O

(
1
α2
q

)

cq =

(
1− i

q2

αq
+

q4⊥
1+ q2⊥

1
α2
q

)
aq

=
1

1+ q2

(
1− i

αq

2+
(
1+ q2

)2
1+ q2

− 2q2

α2
q

)
+O

(
1
α3
q

)

dq =

(
1+

q4⊥
1+ q2⊥

1
α2
q
− i

q2

αq

)
bq.

Using the expression for Rq in the adiabatic regime one finds
the non-linear density corrugation damping rate:

ζ
(r)
1k =

∑
q⃗

Θ
(r)
k,−q,qk

2
xq

2
y

4q4

(1+ q2)2
1
α2
q
Iq. (71)

Note that sign of the damping rate ζk is positive definite in the
adiabatic regime! This means that the zonal density corruga-
tions are modulationally stable—indeed diffusively damped—
for α > 1. In, contrast to the case of zonal flows, distant inter-
action of small and large scales does not generate density cor-
rugations. After some algebraic manipulations, one can show
that the cross-coefficient ζ(r)2k becomes

ζ
(r)
2k =

∑
q⃗

Θ
(r)
k,−q,qk

2
xq

2
y

(
1+ 2q2

)
(1+ q2)2

q4

α2
q
Iq.

Similarly, the the noise term becomes

Fnk = 4
∑
q⃗

Θ
(r)
k,−q,qk

2
xq

2
y
q4⊥
α2
q
I2q. (72)

Note that the modulational growth ζ(r)1k , the cross-coefficient

ζ
(r)
2k and the noise Fnk—all scale as 1

α2
q
, and are positive def-

inite. This means the density corrugations get weaker as α
increases,—i.e. as the response become more adiabatic.

3.4. Spectral evolution of zonal cross-correlations

It is interesting to note that several of the results of this
section depend sensitively upon the cross-correlation ⟨n⋆kϕk⟩.
The impact of cross-correlation on spectral transfer process
has long been appreciated in the context of waves and trans-
port [59]. This was discussed above. However, the significance
of zonal cross-correlation has not been appreciated, and is dis-
cussed here for the first time. While the cross correlation for
the wavy component can be simplified (forα > 1) by using the
linear response, this is not valid for the zonal modes. Moreover
the accumulation of energy in the zonal modes suggests that
zonal cross correlation merits special attention. Finally, we
note that the cross-spectrum encodes information concerning
the relative phasing of zonal shears and density corrugations.
Thus it is central to the description of staircases, and other spa-
tial patterns [5, 6]. In staircases, zonal density and potential
self-organize in a quasi-periodic pattern, and thus are spatially
correlated. Here follows an approach to calculate the zonal
correlation. Multiplying the zonal density equation by zonal
vorticity (i.e. zonal shear) and multiplying the zonal vorticity
equation by zonal density and adding the resulting equations
yields

∂

∂t
n̄∇2

xϕ̄−µn̄∇4
xϕ̄−Dn∇2

xϕ̄∇2
x n̄=−∇2

xϕ̄∇xΓnx− n̄∇2
xΠxy

(73)

where Γnx = ṽxñ is radial particle flux and Πxy = ṽxṽy is the
Reynolds stress. Now considering ⟨⟩ ≡

´
dx/L, the equation

for the zonal correlation becomes

∂

∂t

〈
n̄∇2

xϕ̄
〉
− (µ+Dn)

〈
∇2
x n̄∇2

xϕ̄
〉

=
〈
Γnx∇3

xϕ̄
〉
+ ⟨∇xΠxy∇xn̄⟩ . (74)

This shows that the zonal correlation is determined by the cor-
relations of profiles and fluxes. The first term on the right
hand side is the correlation of the radial particle flux with
zonal vorticity gradient and the second term is correlation of
Reynolds force (vorticity flux) with the zonal density gradi-
ent. Thus zonal correlations are relevant to spatial structure of
the profiles. Setting ky = k∥ = 0 in equation (19), the evolution
equation for zonal cross-correlation spectrum becomes(

∂

∂t
+(µ+Dn)k

2
x

)
⟨nkϕ⋆k ⟩=

∑
k⃗=p⃗+q⃗

ẑ · p⃗× q⃗

11
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×

[(
q2 − p2

)
k2x

〈
nkϕ

⋆
pϕ

⋆
q

〉
+ ⟨ϕ⋆kϕpnq⟩− ⟨ϕ⋆kϕqnp⟩

]
. (75)

Now the triplet correlations are calculated as outlined in the
previous sub-sections and details are provided in appendix D.
It is straight forward to arrive at the following evolution
equation for the real part of zonal correlation ℜ⟨nkϕ⋆k ⟩.(

∂

∂t
+(µ+Dn)k

2
x

)
ℜ⟨nkϕ⋆k ⟩+ℜ [2ξ1k ⟨nkϕ⋆k ⟩]

+ 2ξ(r)2k

〈
|nk|2

〉
+ 2ξ(r)3k

〈
|ϕk|2

〉
= Fnϕk (76)

where the terms on the left hand side result from the coherent
part of the triplet correlations and that on the right hand side
is the incoherent noise term. Here

ξ1k =
∑
k⃗=p⃗+q⃗

(ẑ · p⃗× q⃗)2Θ⋆
kpq

(
q2 − p2

)
k2x[

a⋆p
(
q2 − k2

)〈
|ϕq|2

〉
+ b⋆p

〈
nqϕ

⋆
q

〉]
+
∑
k⃗=p⃗+q⃗

(ẑ · p⃗× q⃗)2Θkpq

[
dq
〈
|ϕp|2

〉
− bp

〈
nqϕ

⋆
q

〉]
= η1k+ ζ1k

so that its real part

ξ
(r)
1k = η

(r)
1k + ζ

(r)
1k

is the sum of the zonal flow intensity and corrugation intens-
ity damping rates. Expanding the imaginary part of ξ1k about
p⃗=−q⃗ and using the qy-symmetry properties of the coeffi-

cients aq, bq, dq and Rq shows that ξ(i)1k = 0. This implies that

ℜ [2ξ1k ⟨nkϕ⋆k ⟩] = 2ξ(r)1k ℜ⟨nkϕ⋆k ⟩. The coefficient of coupling to
corrugations intensity is

ξ2k =−
∑
k⃗=p⃗+q⃗

(ẑ · p⃗× q⃗)2Θ⋆
k,p,q

(
q2 − p2

)
k2x

b⋆p
〈
|ϕq|2

〉
= η2k

so that ξ(r)2k = η
(r)
2k , and the coefficient of coupling to zonal flow

intensity is

ξ3k =−
∑
k⃗=p⃗+q⃗

(ẑ · p⃗× q⃗)2Θkpq
[
ap
(
k2 − q2

)〈
ϕ⋆qnq

〉
−bp

〈
|nq|2

〉
+ cq

(
p2 − k2

)〈
|ϕp|2

〉
+ dq

〈
ϕpn

⋆
p

〉]
= ζ2k

so that ξ(r)3k = ζ
(r)
2k . Finally, the noise term is

Fnϕk = ℜ
∑
k⃗=p⃗+q⃗

(ẑ · p⃗× q⃗)2
1
k2x

(
q2 − p2

)[
Θ⋆
kpq+Θkpq

]
×
[〈

|ϕp|2
〉〈
nqϕ

⋆
q

〉
−
〈
|ϕq|2

〉〈
npϕ

⋆
p

〉]
.

Expanding about p⃗=−q⃗, and using the linear density poten-
tial relation for the wavy mode

〈
nqϕ⋆q

〉
= RqIq, it is obvious to

see that Fnϕk = 0. Hence the evolution equation for ℜ⟨nkϕ⋆k ⟩
becomes(

∂

∂t
+(µ+Dn)k

2
x

)
ℜ⟨nkϕ⋆k ⟩+ 2ξ(r)1k ℜ⟨nkϕ⋆k ⟩

+ 2ξ(r)2k

〈
|nk|2

〉
+ 2ξ(r)3k

〈
|ϕk|2

〉
= 0. (77)

In steady state,

ℜ⟨nkϕ⋆k ⟩=
2ξ(r)2k

〈
|nk|2

〉
+ 2ξ(r)3k

〈
|ϕk|2

〉
−(µ+Dn)k2x − 2ξ(r)1k

. (78)

The sign of the real of the zonal cross correlation spectrum is
determined by the sign of −(µ+Dn)k2x − 2ξ(r)1k , where ξ(r)1k is
the sum of the non-linear damping rates of the zonal intensity
and density corrugation ξ(r)1k = η

(r)
1k + ζ

(r)
1k . Note that zonal flow

non-linear damping rate is negativewhile the non-linear damp-
ing rate for density corrugation is positive. This implies that
the zonal cross correlation is positive when the−η(r)1k − ζ

(r)
1k >

(µ+Dn)k2x/2 i.e. when the modulational growth of zonal flow
intensity exceeds the non-linear damping rate of density cor-
rugation by (µ+Dn)k2x/2. Otherwise, the sign of ℜ⟨nkϕ⋆k ⟩
is negative. A positive value of ℜ⟨nkϕ⋆k ⟩ suggests that zonal
density and zonal potential tend to align. A negative value of
ℜ⟨nkϕ⋆k ⟩ suggests that zonal density and zonal potential are
anti-correlated. zonal correlation suggests that corrugations
and shears tend to align. A negative value suggests that cor-
rugations and shears are anti-correlated.

Note that this is a spectral correlation. Multiplying by −k2x
and summing over all k⃗ yields the correlation of zonal density
and zonal vorticity〈

n∇2
xϕ
〉
=
∑
kx

−ℜ
〈
nkk

2
xϕ

⋆
k

〉

=
∑
kx

−k2x
2ξ(r)2k

〈
|nk|2

〉
+ 2ξ(r)3k

〈
|ϕk|2

〉
−(µ+Dn)k2x − 2ξ(r)1k

. (79)

To obtain correlation of density gradient and vorticity〈
∇xn∇2

xϕ
〉
=
∑
kx

−ℜ
〈
ikxnkk

2
xϕ

⋆
k

〉
=
∑
kx

k3xℑ⟨nkϕ⋆k ⟩ (80)

one has to obtain imaginary of the correlation spectra
ℑ⟨nkϕ⋆k ⟩. This must be obtained from equation (A24) in the
appendix. From equation (A24) one can arrive at the follow-
ing equation for ℑ⟨nkϕ⋆k ⟩:(

∂

∂t
+(µ+Dn)k

2
x

)
ℑ⟨nkϕ⋆k ⟩+ 2ξ(r)1k ℑ⟨nkϕ⋆k ⟩

+ 2ξ(i)1k ℜ⟨nkϕ⋆k ⟩+ 2ξ(i)2k

〈
|nk|2

〉
+ 2ξ(i)3k

〈
|ϕk|2

〉
= F(i)

nϕk.

(81)

Now it is straight forward to to show that the coupling coef-
ficients ξ(i)1k , ξ

(i)
2k and ξ(i)3k and the imaginary part of the zonal

cross correlation noise i.e. F(i)
nϕk, all vanish for a small k/q

12
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expansion due to qy—symmetry properties of the coupling
coefficients a(i), b(i), c(i), d(i) and the imaginary of the response
function R(i)

n i.e. all are odd in qy. As a concrete example, we
show how noise term vanishes in the following. The imaginary
noise term F(i)

nϕk is given by

F(i)
nϕk = ℑ

∑
k⃗=p⃗+q⃗

(ẑ · p⃗× q⃗)2
1
k2x

(
q2 − p2

)[
Θ⋆
kpq+Θkpq

]
×
[〈

|ϕp|2
〉〈
nqϕ

⋆
q

〉
−
〈
|ϕq|2

〉〈
npϕ

⋆
p

〉]
.

Now expanding about p⃗=−q⃗ and using q2 − p2 =−k2 +

2kxqx and Θ
(r)
kpq ≈Θ

(r)
k,−q,q−

k⃗
2 ·

∂Θ
(r)
k,−q,q

∂q⃗ one obtains

F(i)
nϕk =−4

∑
k2xq

2
y

(
Θ

(r)
k,−q,q+ qx

∂Θ
(r)
k,−q,q

∂qx

)
×
(
IqR

(i)
nq +O(kx)

)
= 4

∑
k2xq

2
yΘ

(r)
k,−q,qqx

∂

∂qx

(
IqR

(i)
nq +O(kx/qx)

)
.

Note that R(i)
nq is odd in qy and hence Fnϕk vanishes to leading

order. Similarly, one can show that coupling coefficients ξ(i)1k ,

ξ
(i)
2k and ξ(i)3k vanish to leading order. Note that the imaginary of

the triad response time for p⃗=−q⃗ is always zero i.e.Θ(i)
k,−q,q =

0 and hence does not play any role in setting up the coupling
coefficients in a low k expansion. Hence the equation for the
imaginary cross correlation becomes(

∂

∂t
+(µ+Dn)k

2
x

)
ℑ⟨nkϕ⋆k ⟩+ 2ξ(r)1k ℑ⟨nkϕ⋆k ⟩= 0. (82)

Note that this equation is decoupled from the other three
equations -zonal intensity equation (57), density corrugation
equation (70) and the real of zonal cross correlation equation
(76). The equation (82) can have either an exponentially grow-
ing or exponentially decaying solution depending on the sign
of (µ+Dn)k2x + 2ξ(r)1k . Since this equation has no steady state
solution, a physically constrained solution will be an expo-
nentially decaying solution which vanish asymptotically i.e.
ℑ⟨nkϕ⋆k ⟩= 0. This constrains (µ+Dn)k2x + 2ξ(r)1k > 0.

3.4.1. Connection with observations. This implies that
in DW turbulence the zonal density and potential cross-
correlation is negative i.e.

〈
nϕ
〉
< 0. The zonal density and

vorticity cross-correlation is then positive i.e.
〈
n∇2

xϕ
〉
> 0.

However the zonal density gradient and zonal vorticity cross-
correlation should vanish as ℑ⟨nkϕ⋆k ⟩= 0 to leading order,
i.e.
〈
∇xn∇2

xϕ
〉
= 0. The density gradient and vorticity gradi-

ent cross-correlation becomes positive i.e.
〈
∇xn∇3

xϕ
〉
> 0.

This means that the zonal density jumps are co-located with
the zonal vorticity jumps. Finally, another correlation of
interest could be between zonal density gradient and zonal
flow

〈
−∇xn∇xϕ

〉
. This can be obtained as

〈
−∇xn∇xϕ

〉
=∑

kx
−k2xℜ⟨nkϕ⋆k ⟩> 0. This means density gradient peaks are

co-located with the zonal flow peaks. These results align with
the observations of staircase features in the GYSELA simula-
tions [6], with the caution that they studied temperature pro-
file corrugation rather than density. For better comparison with
simulations and experiments, temperature corrugation dynam-
ics should also be investigated. This can be achieved through
spectral closure theory of ITG turbulence. This clearly is a sub-
ject for a separate study.

3.4.2. A quasilinear alternative. The correlations
〈
Γnx∇3

xϕ̄
〉

and ⟨∇xΠxy∇xn̄⟩ can be obtained by quasilinear calculations
as follows. Quasilinear expression for particle flux is obtained
as

Γnx =
∑
k

−kyR(i)
nk |ϕk|

2

where the imaginary part of the density-potential response
function is

R(i)
nk =− α̂(ω⋆e−ωr)+ γω⋆e

|ω+ iα̂|2
.

The dispersion relation with mean/zonal vorticity gradient
∇3
xϕ can be obtained as

k2⊥ω
2
k +ωk

{
iα̂
(
1+ k2⊥

)
− ky∇3

xϕ
}
− iα̂

{
ky∇3

xϕ+ω⋆e
}
= 0.
(83)

The the expression for real frequency in the adiabatic regime
becomes

ωr =
ky∇3

xϕ+ω⋆e

1+ k2⊥

and the growth rate in the adiabatic regime becomes

γ =
ω2
r

α̂
k2⊥ − ωr

α̂
ky∇3

xϕ.

Clearly, the vorticity gradient induces a frequency shift and
reduces the growth rate. Now R(i)

n to leading order in 1
α̂ in the

adiabatic regime becomes

R(i)
nk =−k2⊥ωr

α̂
=−k2⊥

α̂

ky∇3
xϕ+ω⋆e

1+ k2⊥
.

Hence the particle flux can be expressed as

Γnx =
∑
k

ky
k2⊥
α̂

ky |ϕk|2

1+ k2⊥

[
∇3
xϕ−∇xn

]
= l1∇3

xϕ− l2∇xn.

Next, the vorticity flux S =∇xΠxy is obtained as

S =−χy∇3
xϕ+Sres

13
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where the diffusivity is χy =
∑

k
k2yγ|ϕk|2

|ω|2 and the residual vor-
ticity flux is

Sres = ℜ
∑
k

kyα̂
ω

ω⋆e−ω

ω+ iα̂
|ϕk|2 .

The residual flux must be expandable in the form

Sres = L1∇3
xϕ−L2∇xn

where the first term represents negative diffusion of zonal vor-
ticity and hence, accounts for themodulational growth of zonal
flow. The second term is the density gradient dependent resid-
ual flux, which vanish in the limit α → ∞. So now the cross-
correlation

〈
Γnx∇3

xϕ̄
〉
becomes

〈
Γnx∇3

xϕ̄
〉
= l1

∑
q

q6x
〈∣∣ϕq∣∣2〉+ l2ℜ

∑
q

q4x
〈
nqϕq⋆

〉
and the cross-correlation ⟨∇xΠxy∇xn̄⟩ becomes

⟨S∇xn̄⟩=−(L1 −χy)ℜ
∑
q

q4x
〈
nqϕq⋆

〉
+L2

∑
q

q2x
〈
|nq|2

〉
.

In the adiabatic regime [64]

χy =
∑
k

k2y
α̂

k2⊥
1+ k2⊥

|ϕk|2

Sres =−
∑
k

k2y
α̂

k2⊥
1+ k2⊥

|ϕk|2∇xn.

Hence the evolution equation for zonal cross-correlation
obtained from quasilinear calculations becomes

∂

∂t
ℜ
〈
n̄qϕ̄

⋆
q

〉
− (µ+Dn)q

2
xℜ
〈
n̄qϕ̄

⋆
q

〉
+
(
l2q

4
x − (L1 −χy)q

4
x

)
ℜ
〈
nqϕq⋆

〉
+ l1q

6
x

〈∣∣ϕq∣∣2〉
+L2q

2
x

〈
|nq|2

〉
= 0. (84)

This is morphologically the same as equation (77), obtained
by spectral calculations. Similarly an equation for ℑ

〈
n̄qϕ̄⋆q

〉
can be obtained from the evolution equation for correlation〈
∇xn∇2

xϕ
〉
, which is similar to (82).

This sub-section elucidated the zonal cross-correlation, it is
physics content and what spectral transfer process determines
it. The zonal cross-correlation is of potential significance to
layering or staircase structure, as it sets the relative phasing of
shear layers and regions of∇n steepening. Further analysis of
zonal cross-correlation in layering in model boundary value
problems is clearly necessary. The results of spectral calcu-
lations for zonal flows and corrugations excitation and their
interaction are concisely summarized in table 1, below.

4. Wave kinetic analysis

Here we present adiabatic theory of zonal modes generation
and compare the results with spectral calculations presented
in the previous section.

4.1. Zonal mode equations

The zonal mode equations are obtained by flux surface average
of the turbulence equations.

∂

∂t
∇2
xϕ−µ∇4

xϕ=∇2
xℜ
ˆ
d⃗kkykx |ϕk|2 (85)

and

∂

∂t
n−Dn∇2n=−∇xℜ

ˆ
d⃗kikyRn |ϕk|2 . (86)

In a system turbulence and zonal modes co-exist, the mod-
ulations of micro-scale fields by mesoscale zonal modes are
adiabatic, and so conserve wave action density Nk = Ek/ωrk,
where Ek is the energy density of the kth wavey mode,
with real frequency ωrk. The action density N(⃗k, x⃗, t) may
be thought of as a wave population density—analogous to
phase space density. The action density of the wavy mode

has the form of N
(
|ϕk|2 , |nk|2

)
which using the linear Four-

ier amplitude relations can be expressed as N
(
|ϕk|2

)
. Then

the modulated fluxes can be expressed in terms of modula-
tion of action density via δ |ϕk|2 = CkδNk. For the drift wave
turbulence described by Hasegawa–Wakatani equations Ck =

ωrk/
(
k2⊥ + |Rnk|2

)
, where Rnk is density—potential response

function Rnk =
ω⋆e+iα̂k
ωk+iα̂k

. The wave kinetic equation [13, 65]
describing the evolution of action density is given by

∂Nk
∂t

+
∂ωrk

∂k⃗
· ∂Nk
∂X⃗

− ∂ωrk

∂X⃗
· ∂Nk
∂k⃗

= γkNk−∆ωN2
k (87)

where ωrk and γk are the real frequency and growth rate in
the presence of slowly varying mesoscale zonal modes. The
first term on the right hand side is the linear growth and the
second term is the eddy damping due to non-linear interaction
which are local in k. Growth and non-linear damping balance
to yield the steady state population via γkNk−∆ωN2

k = 0, in
the absence of modulations. For stability analysis we make a
Chapman–Enskog expansion of Nk; Nk = ⟨Nk⟩+ δNk, where
⟨Nk⟩ is the slowly varyingmeanwave action density and δNk is
the perturbation induced by the gradients of ⟨Nk⟩ in the phase

space
(
X⃗, k⃗
)
. The linearized wave kinetic equation for δNk

becomes(
∂

∂t
+ v⃗gk ·

∂

∂X⃗
+ γk

)
δNk =

∂δωrk

∂X⃗
· ∂ ⟨Nk⟩
∂k⃗

+ δγk ⟨Nk⟩ .

(88)

Assuming ψ = ψqe(−iΩt+qxX)where ψq = {δNk,q,ϕq,nq} the
wave kinetic equation yields

δNk,q =Rk,q

(
∂δωrk
∂X

∂ ⟨Nk⟩
∂kx

+ δγk ⟨Nk⟩
)

(89)

14



Plasma Phys. Control. Fusion 63 (2021) 035015 R Singh and P H Diamond

Table 1. Summary of zonal flow and corrugations interactions.

(A) Zonal flow: Vorticity equation—Polarization charge flux

Process Impact Key Physics Result

Polarization beat noise Seeds zonal flow Polarization flux correlation, positive
definite

Equation (64)

Zonal flow response (comparable to
noise)

Drives zonal shear using DW
energy

Non-local inverse transfer in kx, Negative
viscosity

Equation (68)

Zonal shear straining of small scale Regulates waves via straining Stochastic refraction straining waves,
induced diffusion to high kx

Equation (45)

(B) Density corrugations: Density equation—Particle flux

Process Impact Key Physics Result

Density advection beat noise Seeds density corrugation Advection beats due to non-adiabatic
density

Equation (72)

Zonal corrugations response Dampes and regulates density
corrugations

Non-local forward transfer in kx, Positive
diffusivity, turbulent mixing weak for
α≫ 1

Equation (71)

Zonal shear straining of small scale Regulates waves via straining Stochastic refraction straining waves,
induced diffusion to high kx

Equation (47)

(C) Zonal cross-correlation: Vorticity and density transport processes

Process Impact Key Physics Result

Noise and response Sets corrugation—shear layer
correlation; staircase states

Real cross-correlation spectrum +ve
when growth of zonal intensity exceeds
damping rate of corrugation, otherwise
negative

Equation (78)

where the propagator Rk,q is given by

Rk,q =
i

Ωq− qxvgx+ i |γk|
. (90)

Now the frequency modulation by the zonal modes can be
obtained as

δωrk = ky∇Xϕ− ky
∂ωrk
∂ω⋆e

∇Xn. (91)

Similarly the growth rate modulation can be obtained as

δγk =−ky
∂γk
∂ω⋆e

∇Xn (92)

where

∂ωrk
∂ω⋆e

=
α̂
(
2k2⊥γ+ α̂

(
1+ k2⊥

))∣∣2k2⊥ω+ iα̂
(
1+ k2⊥

)∣∣2
and

∂γk
∂ω⋆e

=
α̂2k2⊥ωr∣∣2k2⊥ω+ iα̂

(
1+ k2⊥

)∣∣2 .
Finally, using the above expressions for action density mod-
ulation, frequency and growth rate modulations, the equation
for zonal vorticity becomes

∂

∂t
∇2
xϕ−µ∇4

xϕ=∇2
x

ˆ
d⃗kkykxCkRk,q

×
[
ky

{
∇2
Xϕ−

∂ωrk
∂ω⋆e

∇2
Xn

}
∂ ⟨Nk⟩
∂kx

− ky
∂γk
∂ω⋆e

∇Xn⟨Nk⟩
]

=∇2
x

ˆ
d⃗kkykxCk

[
R(r)
k,qky

{
∇2
Xϕ−

∂ωrk
∂ω⋆e

∇2
Xn

}
∂ ⟨Nk⟩
∂kx

− iR(i)
k,qky

∂γk
∂ω⋆e

∇Xn⟨Nk⟩
]
. (93)

Similarly the equation for zonal density becomes

∂

∂t
n−Dn∇2

xn=∇x

ˆ
d⃗kkyR

(i)
nk CkRk,q

×
[
ky

{
∇2
Xϕ−

∂ωrk
∂ω⋆e

∇2
Xn

}
∂ ⟨Nk⟩
∂kx

− ky
∂γk
∂ω⋆e

∇Xn⟨Nk⟩
]

−∇x

ˆ
d⃗kl1∇3

xϕCk ⟨Nk⟩

=−∇x

ˆ
d⃗kkyR

(i)
nk CkR

(r)
k,qky

∂γk
∂ω⋆e

⟨Nk⟩∇Xn

−∇x

ˆ
d⃗kl1∇3

xϕCk ⟨Nk⟩ . (94)

Note that the first term on the right hand side in the above
equation results from the flux modulation due to modula-
tion of action density, and the second term results from
flux modulation via modulation of the wavy density-potential
response function R(i)

n . The terms proportional to ∂⟨Nk⟩
∂kx

van-
ished because the integrand is odd in ky. That is, action dens-
ity modulation due to frequency modulation does not con-
tribute to flux modulation. Hence particle flux modulation is
independent of the spectral gradient. Note that particle flux
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modulation occurs via growth rate modulation of action dens-
ity and frequency modulation of R(i)

n whereas the Reynolds
stress modulation occurs via frequency and growth rate mod-
ulation of action density, only. The particle flux modulation
is independent of the spectral slope, whereas the Reynolds
stress modulation depends upon spectral slope. The above
equation shows that zonal density modulations are damped for
α > 1. The above zonal mode equations show that the evol-
utions of zonal flow and corrugations are coupled, but differ-
ent, and are consistent with the results obtained by the spectral
calculations.

4.2. Back reaction of zonal modes on drift wave turbulence

While the zonal flows and corrugations are generated by tur-
bulence, they also react back on turbulence via random refrac-
tion (shearing and corrugation) in k-space. The back reaction
of the zonal modes on the turbulence can be studied by taking
the average of the WKE (87).

∂ ⟨Nk⟩
∂t

=

〈
∂ωrk

∂X⃗
· ∂Nk
∂k⃗

〉
+ ⟨γkNk⟩−∆ω

〈
N2
k

〉
=

〈
∂δωrk

∂X⃗
· ∂δNk
∂k⃗

〉
+ ⟨δγkδNk⟩−∆ω ⟨δNkδNk⟩ .

(95)

Using the linear response of δNk for the zonal mode perturb-
ation, a quasilinear expression for the first term on the right
hand side of the above equation is obtained〈

∂δωrk

∂X⃗
· ∂δNk
∂k⃗

〉
=

∂

∂kx

[〈
∂δωrk
∂X

Rkq
∂δωrk
∂X

〉
∂ ⟨Nk⟩
∂kx

+

〈
∂δωrk
∂X

Rkqδγk

〉
⟨Nk⟩

]
.

Similarly,

⟨δγkδNk⟩=
〈
∂δωrk
∂X

Rkqδγk

〉
∂ ⟨Nk⟩
∂kx

+ ⟨δγkRkqδγk⟩⟨Nk⟩ .

Eventually, we arrive at the following evolution equation for
the mean action density under the influence of zonal modes.

∂ ⟨Nk⟩
∂t

=
∂

∂kx

[
Dkk

∂ ⟨Nk⟩
∂kx

+Vk ⟨Nk⟩
]
+Vk

∂ ⟨Nk⟩
∂kx

+Γk ⟨Nk⟩ .

(96)

Equation (96) is a convection–diffusion equation, with kx-
space diffusivity Dkk given by

Dkk ≡
〈
∂δωrk
∂X

Rkq
∂δωrk
∂X

〉
=

ˆ
d⃗qq2R(r)

k,q |δωkq|
2

=

ˆ
d⃗qR(r)

k,qk
2
yq

4
x

∣∣∣∣ϕq− ∂ωrk
∂ω⋆e

nq

∣∣∣∣2 ,
(97)

the convection speed Vk is

Vk ≡
〈
∂δωrk
∂X

Rkqδγk

〉
=−ℜ

ˆ
d⃗qiRk,qkyq

3

×
(
ϕq−

∂ωrk
∂ω⋆e

nq

)
ky
∂γk
∂ω⋆e

n−q

=

ˆ
d⃗q

vgxk2yq
4
x

|Ωq− qxvgx+ iγk|2

(
ϕq−

∂ωrk
∂ω⋆e

nq

)
∂γk
∂ω⋆e

n−q

(98)

and the non-linear growth rate Γk becomes

Γk ≡ ⟨δγkRkqδγk⟩=
ˆ
d⃗qR(r)

k,q |δγkq|
2

=

ˆ
d⃗qR(r)

k,qq
2
xk

2
y

(
∂γk
∂ω⋆e

)2

|nq|2 . (99)

Equation (96) describe how a zonal flow shear and density
corrugations lead to diffusion of turbulence in k-space. While
zonal flow shear only diffuses turbulence in k-space, dens-
ity corrugations play a role in both in k-space diffusion and
non-linear growth of turbulence. The expression for diffusiv-
ity Dkk reveal that density corrugation can enhance or reduce
turbulence diffusion depending on the phase relation between
zonal potential and zonal density—i.e. zonal cross correla-
tion!. It is also interesting to note that density corrugation con-
tributes to convection of turbulence in k-space. Clearly, the
sign of the convection speed Vk depends on the zonal cross-
correlation. The non-linear growth rate Γk due to linear growth
modulation by density corrugation injects energy back into the
turbulence, locally. Thus, there is a competition between the
random shearing of the zonal flow as a saturation mechan-
ism, and energy reintroduction into the turbulence via density
corrugations.

Comparisonwith the spectral calculations shows that turbu-
lence kinetic energy and internal energy diffusivity scale as the
square of zonal shear q4ϕ2

q, whereas WKE analysis shows that

the action density diffusivity scales as q4x

∣∣∣ϕq− ∂ωrk
∂ω⋆e

nq
∣∣∣2. This

clearly shows the important role of zonal cross-correlation in
setting the k-space diffusion of action density. In contrast, the
role of zonal cross-correlation in spectral energy diffusivity is
not immediately clear from the spectral analysis so far. Further
investigation of this point is necessary.

To put sections 3 and 4 in perspective, table 2 below gives
a comparison of wave kinetic theory results for zonal modes
(flows and corrugations) with the spectral equation calcula-
tions presented earlier in this paper.

5. Predator prey dynamics with non-linear zonal
noise

Here we study the effect of zonal noise on the predator prey
dynamics of turbulence energy and zonal flow energy. Here,
we follow the model of [1] which evolves turbulence energy
and zonal flow energy in 0D for the strongly adiabatic limit.
The turbulence energy ε evolves as

∂ε

∂t
= γε−σEvε− ηε2 (100)
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Table 2. Comparison of spectral and wave kinetic results.

Physical effect Spectral theory (1) Adiabatic theory (2) Comments

Zonal flow modulation Viscosity
∑

q⃗ q
2
yΘ

(r)
k,−q,qqx×

∂
∂qx

[(
a−qq2 + b−qR⋆

nq

)(r)
Iq
] Viscosity

´
d⃗kkykxCkR(r)

k,qky
∂⟨Nk⟩
∂kx

−ve for ∂⟨Nk⟩
∂kx

< 0

For α→∞, both predict same
growth rate due to −ve viscosity
with Θk,−q,q ↔Rk,q.

Corrugations modulation Particle diffusivity∑
q⃗Θ

(r)
k,−q,qq

2
y

4q4

(1+q2)2
1
α2
q
Iq +ve

for α > 1, scales as 1
α2 .

Particle diffusivity
−
´
d⃗kkyR

(i)
nk CkR

(r)
k,qky

∂γk
∂ω⋆e

⟨Nk⟩
+ve for α > 1, scales as 1

α2 .

Both predict same damping rate
for corrugation due to +ve diffus-
ivity with Θk,−q,q ↔Rk,q.

Induced diffusion Kinetic energy diffusivity∑
q 4k

2
y

(
k
k⊥

)4
q2xEqΘ

(r)
kkqa

r
k,

Internal energy diffusivity∑
q k

2
yq

4
x

〈
|ϕq|2

〉
Θ

(r)
kkqd

r
k

Mean action density diffusivity´
d⃗qR(r)

k,qk
2
yq

4
x

∣∣∣ϕq− ∂ωrk
∂ω⋆e

nq
∣∣∣2

Density corrugations decrease
(increase) action diffusivity when
the zonal density and potential are
correlated (anti-correlated).

Both kinetic and internal energy
diffuse by zonal shear energy.
Role of zonal cross-correlation
unclear in (1), ignored for simpli-
city.

where the first term on the right hand side represents linear
growth of turbulence with growth rate γ. The second term
represents turbulence damping due to diffusion induced by
zonal flow in the kx-space. The third term represents the non-
linear damping of turbulence, by self-interaction. The zonal
flow energy Ev evolves as

∂Ev
∂t

= σεEv− γdEv+βε2 (101)

where the first term on the right hand side represents mod-
ulational growth of zonal flow and the second term repres-
ents collisional damping of zonal flow, with damping rate
γd. The third term βε2 on the right hand side of equation
(101) represents drive by the zonal noise, a new element in
the model as presented here. It is this term which makes our
predator–prey model different from previous incarnations of

the model [1]. The parameters of this model are γ =
k2⊥
α̂

ωr2
k

1+k2⊥
,

σ =
∑

q 2k
2
xΘ

(r)
k,−q,q, β =

∑
q 4k

2
xq

−2
y q2xΘ

(r)
k,−q,q, γd = µk2x .

5.1. Fixed point analysis

The above equations yield, for steady state:

σEv = γ− ηε (102)

and

(σε− γd)Ev+βε2 = 0. (103)

Defining ε1 = γd/σ and ε2 = γ/η and using the above
equations, the fixed points are obtained by the roots of the fol-
lowing equation(

1− β

η

)
ε2 − ε(ε1 + ε2)+ ε1ε2 = 0,

which are:

ε± =

(ε1 + ε2)±
√
(ε1 + ε2)

2 − 4
(
1− β

η

)
ε1ε2

2
(
1− β

η

) . (104)

The corresponding zonal flow energies are

E±
v = σ−1

(
γ− ηε±

)
. (105)

Note that for the case without noise β= 0, ε+0 = ε2, ε
−
0 = ε1,

E+
v0 = 0 and E−

v0 = σ−1η (ε2 − ε1). It is straight forward to
check that the fixed point

(
ε−0 ,E

−
v0

)
=
(
ε1,σ

−1η (ε2 − ε1)
)
is

stable. Clearly, there is a threshold in growth rate γ for excit-
ation of zonal flow in the noise free case. This threshold is

γ > η
γd
σ

(106)

and can be linked to a threshold in edge gradients or flux
(power). Is there a threshold in γ for zonal flow excitation with
noise? Using equations (104) and (105), we see:

γ > η

(ε1 + ε2)±
√
(ε1 + ε2)

2 − 4
(
1− β

η

)
ε1ε2

2
(
1− β

η

)
which implies

γ2

η2

[(
1− 2

β

η

)2

− 1

]
> 0.

This clearly shows that, with noise, there is no threshold
in γ for zonal flow excitation. This is consistent with numer-
ical solutions plotted in figure 1. The phase plane in figure 1
is obtained by performing a linear growth rate scan with noise
strength as a parameter. A linear growth rate scan is a proxy
for a power scan, as power changes the pressure gradient and
hence the growth rate. The figure shows that, without noise,
there is a threshold in growth rate (or power) for appearance
of stable zonal flows. Below the threshold, there is only turbu-
lence, and no zonal flows. Beyond the threshold growth rate—
both turbulence and zonal flows co-exist. On ramping up the
growth rate (or power), the turbulence energy increases as γ/η
below the threshold, until it locks at γd/σ, at the threshold.
Beyond the threshold, turbulence energy remains locked at
the value γd/σ while the zonal flow energy continues to grow
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Figure 1. Zonal flow energy Ev vs turbulence energy ε in a linear
growth rate γ scan with noise strength β as a parameter.

as σ−1η (γ/η− γd/σ). With noise, both zonal flow and tur-
bulence co-exist at any value of growth rate—i,e. there is no
threshold for zonal flow excitation. Both zonal flow and turbu-
lence increase with growth rate. In this case, zonal flow energy
is related to turbulence energy as Ev = βε2/(γd−σε). Note
that, with noise, the turbulence energy never hits the modu-
lational instability threshold, absent noise! Significant zonal
flows are generated well below the modulational instability
threshold.

The next question is how does the noise free base state
change with a weak noise? Taylor expanding about β

η = 0, it
is straight forward to show

ε± = ε±0 ± β

η

ε±2
0

ε+0 − ε−0
+O

(
β2

η2

)
(107)

and

E±
v = E±

v0 ∓
β

η

η

σ

ε±2
0

ε+0 − ε−0
+O

(
β2

η2

)
. (108)

Since ε+0 > ε−0 , the above equations show that the turbulence
energy decreases and zonal energy increases with noise cor-
responding to the stable fixed point. This is consistent with
the numerical solutions shown in figure 2.Why?—Noise feeds
energy into zonal flows!

5.2. Stability of fixed points

The Jacobian of the system of equations (100) and (101) is

D(ε,Ev) =

[
−ηε −σε

γ+(−η+ 2β)ε σε− γd

]
. (109)

The stability of the fixed points are determined by the eigen-
values λ of the D(ε,Ev)

λ2 +λ [(η−σ)ε+ γd] + γdγ+ ησ

(
β

η
− 1

)
ε2 = 0. (110)

The roots are obtained as

λ=

− [(η−σ)ε+ γd]±
√

[(η−σ)ε+ γd]
2 − 4

[
γdγ+ ησ

(
β
η − 1

)
ε2
]

2
. (111)

At β= 0 and ε= γd/σ

λ0 =

−η γd
σ ±

√[
η γd

σ

]2 − 4ηγd
[
γ
η − γd

σ

]
2

.

This shows that the steady state
(
ε−0 ,E

−
v0

)
is stable without

noise. To study effect of noise on the stability of the steady
states, numerical solution of equation (102) is more conveni-
ent. The results are plotted in figure 2, which show that the
fixed point stability degrades with increasing noise strength.

Hence, we see that polarization beat noise affects the
predator-prey dynamics significantly, by eliminating the
threshold in the linear turbulence growth rate. Zonal flows and
turbulence always co-exist at any growth rate. The zonal flow
energy-to-turbulence energy branching ratio increases with
noise strength, as the polarization beat noise pumps energy
into zonal modes.

6. Noise effect on the L–H transition

The previous section showed that polarization beat noise has
a significant effect on predator-prey dynamics of zonal flows
and turbulence. It eliminates the threshold (in the linear growth
of turbulence) for the onset of zonal flows. This indicates that
zonal noise may have an observable effect on the dynamics of
the L–H transition. So here, in this section, we study the effect
of noise on the dynamics of the L–H transition. We examine a
0Dmodel evolving turbulence energy ε, zonal flow energy, and
mean pressure gradientP for this purpose. Thisminimalmodel
is an extension of the KD03 model ala Kim and Diamond [4].
Themodel is exceedingly simple. The point here is to illustrate
noise effects in a familiar setting. The normalized turbulence
kinetic energy ε= q2yρ

2
s Iq/q

2
yρ

2
sρ

⋆2 evolves as:

∂ε

∂t
=

a1Pε
1+ a3V2

− a2ε
2 −

a4v2zε

1+ b2V2
. (112)
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Figure 2. Left: Stable fixed points with noise strength β. Zonal flow energy increases and turbulence energy decreases with β. Right:
eigenvalues λ of the stable fixed points.

Here t is time normalized by gyro-Bohm diffusion time i.e.
t≡ tDGB/a2, where DGB = ciρiρ⋆ is gyro-Bohm diffusivity
and a is the minor radius. The first term on the right hand
side represents linear growth of turbulence driven by pres-
sure gradient P = a |∇P|/Po, via instability. The growth rate
coefficient is normalized as a1 ≡ a1a/ciρ⋆2 and the non-linear
damping rate coefficient is normalized as a2 ≡ a2a/ciρ⋆2. The
factor 1

1+a2V2 represents linear growth rate reduction by mean
flow shear V . The second term represents non-linear damping
of turbulence and the third term represents local damping of
turbulence due to kx-space diffusion induced by mean square
zonal flow shear. The evolution of normalized zonal flow kin-
etic energy v2z = k2xρ

2
s Ik/k

2
xρ

2
sρ

⋆2 is governed by

∂v2z
∂t

=
b1εv2z

1+ b2V2
− b3v

2
z + b4ε

2. (113)

The first term on the right hand side represents modula-
tional growth of zonal flow by Reynolds stress, where b1 =
2(k2xρ

2
s/ρ

⋆2)
∑

q q
2
yρ

2
sΘcs/a and Θ is triad interaction time, in

dimensional form. The factor 1
1+b2V2 represents inhibition of

modulational growth by mean flow shear. This inhibition is
due to the weakening of the response of drift wave spectrum
to a seed zonal flow, via the enhanced decorrelation of drift
wave propagation by a mean shear flow. Note that the same
suppression factor is appears in the damping, due to diffusion
induced by zonal flow shear. This guarantees conservation of
total energy of turbulence and zonal flow. The second term is
the linear damping of zonal flow due to collisional drag. The
third term, proportional to turbulence energy squared, repres-
ents the zonal noise with b4 = (4/ρ⋆2)

∑
q q

2
xρ

2
sq

2
yρ

2
sΘ(cs/a).

This is the unique feature of this incarnation of the KD03
model. The pressure gradient P evolves according to:

∂P
∂t

=−c1
εP

1+ c2V2
− c3P +Q (114)

where the first term on the right hand side represents local
damping by turbulent diffusion. The normalized turbulent
damping coefficients are c1 = (a/L)2 (DT/DGB) and c3 =

(a/L)2 (Dnc/DGB), where DT and Dnc are turbulent and neo-
classical diffusivities and DGB is gyro-Bohm diffusivity. The
factor 1

1+c2V2 accounts for transport suppression due to trans-
port cross-phase reduction by the mean flow shear. The second
term represents neoclassical transport. The third term Q is
a normalized source function gradient that represents input
external power, Q= a2∇Sp/P2

0ciρ
⋆2. Here Sp is the actual

pressure (i.e. heat) source function. Finally, the normalized
mean flow shear V ≡ V ′

Ea/ρ
⋆ci is related to the pressure gradi-

ent P through the diamagnetic part of radial force balance

V =−P2 (115)

where coupling to mean poloidal and toroidal flows are
ignored and a constant ion temperature profile is assumed for
simplicity. Note that this model is an outgrowth of, and yet
significantly different from, the KD03 model, in the sense
that it not only considers the effect of zonal noise but also
includes the effect of mean E×B induced suppression of
turbulence growth, modulational zonal growth and transport
cross-phase reduction. These physically motivated modifica-
tions allow producing an H-mode with residual turbulence,
and manifest hysteresis phenomenon in a cyclic power ramp.

The input power Q is the main control parameter of this
model. The noise strength b4 is a subsidiary control para-
meter which facilitate study of effect of noise on L–H trans-
ition. The equations (112)–(115) are solved numerically for
the Q= 0.01t, and assuming constant values for the paramet-
ers ai, bi and ci. Figure 3 shows the evolution of turbulence
energy, zonal flow energy and pressure gradient as the input
power is ramped up, with noise strength b4 as a parameter.
First, we discuss the noise-free case i.e. b4 = 0. Clearly there
are three distinct stages. The L-mode, I(intermediate)-phase
and the H mode. L mode is the initial stage in which (as the
input powerQ ramped up from zero), the mean pressure gradi-
ent P steepens and excites turbulence from linear instability.
Notice that there is no zonal flow in the L-mode. Upon further
heating, turbulence continues to grow and excites zonal flows
when the input power exceeds a threshold set by turbulence
level and flow damping. When the turbulent drive becomes
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Figure 3. (a) L–H transition dynamics without noise. Notice that zonal flow exist only within the I-phase and residual turbulence exists in
H-mode. (b) L–H transition dynamics with noise. Notice that zonal flow exists at any power, but is most prominent within the I-phase. Noise
eliminates the threshold for zonal flow appearance, increases the duration of I-phase, reduces the turbulence energy and reduces the ultimate
power threshold for L–H transition. Parameters are a1 = 1, a2 = 0.2, a3 = 0.7, a4 = 0.7, b1 = 1.5, b2 = 0.7, b3 = 1, c1 = 1, c2 = 0.7 and
c3 = 0.5.

strong enough to overcome flow damping, it generates zonal
flows by Reynolds stress. The turbulence energy overshoots
dramatically before exciting the zonal flow. Turbulence and
zonal flows then form a self-regulating system, as the shearing
by zonal flows damps the turbulence. The first appearance of
zonal flow marks the beginning of the I-phase. In the I-phase,
zonal flows and turbulence compete, and oscillatory beha-
vior emerge. A gradual increase in the turbulence energy is
noticed in the I-phase. This is due to the reduction in the zonal
flow growth by the mean shear flow, which strengthens the
growth of turbulence. The behavior of the turbulence envelope
in the I-phase is given by the stationary solution of equation
(113) i.e. ε= b3

(
1+ b2V2

)
/b1, which increases as the pres-

sure gradient increases withQ. At sufficiently highQ, the sys-
tem bifurcates into H mode, when turbulence energy drops
suddenly as the pressure gradient jumps up and zonal flows
disappear. This is the H mode, with non-zero residual turbu-
lence. This is more realistic than the Quiescent H mode with
no turbulence, predicted by the KD03 model. After the trans-
ition to H mode, the pressure gradient continues to rise and
turbulence energy continues to fall. The pressure gradient is
primarily set by the neoclassical transport, since the turbulent
transport is drastically reduced due to cross-phase reduction
by the strong mean shear. Further heating may excite MHD
instabilities, which are not modeled here.

Next, we discuss the case with finite zonal noise (b4 ̸= 0).
The dashed and dotted dashed curves in figure 3 correspond to
finite noise. There are several important differences as com-
pared to the case without noise.

(a) The most striking change is that significant zonal flows
appear much earlier than for the modulational instabil-
ity threshold without noise. In fact, now there is no clear
threshold in Q (unless there is a threshold for linear
instability, which is assumed not to be the case here) for
zonal flow appearance.

(b) The turbulence level is reduced, there is no overshoot, and
zonal flows are enhanced.

(c) The I-phase oscillations are smaller.
(d) The transition to H-mode (marked by a sharp jump in pres-

sure gradient) occurs at lower Q—i.e. the power threshold
is lower. This is because zonal noise couples more fluctu-
ation energy to benign zonal modes.

(e) Zonal flow remains small but finite in H mode.

The zonal flow in the early phase is noise driven. The ini-
tial exponential rise of the zonal flow tracks the exponential
rise of turbulence energy. This phase of exponentially rising
turbulence is the L mode. On increasing power, the system
enters the I-phase, marked by an approximately linear growth
of turbulence and zonal flow energy. Notice that the I-phase
with noise begins with small overshoot of turbulence. On fur-
ther heating, there comes a point when the steepening of the
pressure profile starts to accelerate, and mean shear begins to
overtake zonal flow shear. The modulational growth is then
reduced by the mean shear and the zonal flow beings to decay.
Notice that turbulence intensity begins to roll down at a higher
Q than does the zonal flow. This transient non-linear rise of
turbulence is due to depletion of zonal flows by mean shear.
In the H mode, the residual turbulence emits zonal noise and
hence zonal flow energy tracks the turbulence energy. So zonal
flows are present in all the three phases (i.e. at any Q)!

6.1. Hysteresis

Figure 4 shows the evolution of turbulence energy, zonal flow
energy and pressure gradient in a cyclic power ramp at a finite
noise strength. Clearly, such a cyclic evolution exhibits hys-
teresis. Turbulence, zonal flow and pressure gradient do not
retreat along the same respective curves, and the H–I back
transition occurs at a lower Q than that of I–H. Notice that
the back transition is associated with an oscillating I-phase,
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Figure 4. The H–L back transition is accompanied by hysteresis. In
presence of zonal noise, hysteresis is robust with respect to
variations in initial conditions and the point of retreat (in Q) in the H
mode.

Figure 5. Noise reduces the area enclosed in the hysteresis curve.

while the I-phase in the forward transition is not oscillatory.
The hysteresis, with noise, is robust with respect to variations
in the initial conditions and the depth of the H mode (i.e. how
far in to the H mode the power ramp down begins). Whereas
without noise, the hysteresis is sensitive to the initial condition
and the depth of the H mode i.e. hysteresis depends on where
in H mode the power ramp-down begins. In the absence of
noise, hysteresis is not robust.

Figure 5 shows effect of increasing noise strength on the
hysteresis in flux and pressure gradient. It can be seen that
the threshold power for both forward and backward transition
decreases at different rates with noise strength. As a result the
area enclosed by the hysteresis curve decreases with noise.

Also the I-phase oscillations in the back transition are reduced
with noise strength.

This section elucidated the effect of zonal noise on the
dynamics of L–H transition and on L–H hysteresis in a cyclic
power ramp. The most significant effect is that noise-driven
zonal flows appear in all modes of the discharge. Zonal flows
appear far below the modulational stability threshold. Zonal
noise increases the extent of the I-phase, reduces overall tur-
bulence energy and reduces the threshold power for the I–H
transition. Zonal noise makes hysteresis phenomenon robust
and reduces the area enclosed by the hysteresis curve in a cyc-
lic power ramp.

7. Conclusions and discussion

In this paper, we presented a unified theory of zonal mode
dynamics. We linked the mechanism of zonal flow excitation
by polarization flux beat noise to that of modulational
instability (i.e. instability due to negative turbulent viscosity),
by situating both in a single formalism based on spectrum
evolution equations. The physics of zonal density corrugations
(i.e. zonal density structures which distort∇n) is shown to dif-
fer substantially from that of zonal shear flows. This unified
analysis addresses the dynamic interplay of different mechan-
isms and the implications thereof for feedback on turbulence
and system states.

This work yielded several new theoretical results worthy of
note. These are:

(a) the derivation of a unified set of spectral equations, encom-
passing non-linear response and polarization and density
advection beat noise. Zonal flows and density corrugations
are calculated. Table 1 summarize the key theoretical res-
ults. Nonlinear invariants are diffused and advected in kx—
space by zonal shear kinetic energy;

(b) vorticity flux correlation is shown to drive zonal flow
noise. Likewise, density corrugation noise is driven by
density flux correlations. Here ‘correlation’ refers to two-
time correlation. Note it is the flux correlation time which
is of interest here;

(c) while the effective viscosity for zonal flows can go neg-
ative, the zonal diffusivity remains positive definite for
α > 1. Thus, DW-ZFT can manifest bi-directional trans-
fer of kinetic energy to large scale with internal energy(
∼
〈∣∣ ñ

n

∣∣2〉) to small scale. This is consistent with famil-

iar 2D fluid phenomenon of the dual cascade of potential

enstrophy

(
∼
〈∣∣∣ ñn − ρ2s∇2

⊥
eϕ̃
T

∣∣∣2〉) to small scale, and

kinetic energy

(
∼
〈∣∣∣ρs∇⊥

eϕ̃
T

∣∣∣2〉) to large scale. The

quantity
〈
n2
〉
is the unique inviscid, α→ 0 invarient of

the Hasegawa–Wakatani system involving only the dens-
ity field. As there are no other such quadratic invariants
involving only density, it tends toward equipartition in
k, as in equilibrium statistical mechanics. Physically, this
means that the velocity straining field tends to ‘chop-up’
density, producing smaller scale elements, and accessing
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smaller scales until cut-off by resolution or dissipation.
Note for α → ∞, density is unaffected and so no inverse
cascade occurs, in that limit either. This should be con-
trasted to the potential field, which is constrained by dual

quadratic invariants of energy
〈
(∇ϕ)2

〉
and enstrophy〈(

∇2ϕ
)2〉

. These force the inverse cascade of energy [66].

This is fundamentally why the viscosity can go negative
while the density diffusivity is positive, also a symptom of
the absence of inverse cascade;

(d) the effective zonal viscosity can be negative, but need
not be! Indeed, the zonal viscosity goes negative only
for an energy spectrum which decays sufficiently rap-

idly in kr-i.e. µeff < 0 for ∂E
∂kr

< 0 and
∣∣∣ ∂E∂kr ∣∣∣< ∣∣∣ ∂E∂kr ∣∣∣crit.

This is consistent with wave kinetics, which links mod-
ulational instability to the condition that the slope of the
action density in kr be sufficiently negative. The sens-
itivity of µeff to spectral slope re-enforces the import-
ance of treating noise and modulational instability in a
unified theory, since the oft-invoked negative viscosity
instability (i.e. modulational instability) may be absent
or very weak, on account of fluctuation spectrum struc-
ture. Table 2 compares wave kinetic and spectral closure
results;

(e) the importance of the zonal cross-correlation spectrum
⟨nkϕ⋆k ⟩ was identified. This naturally appears in the stat-
istical theory, and has been heretofore ignored. The spec-
tral closure theory yields the zonal density-potential cross-
correlation spectra ⟨nkϕ⋆k ⟩, whose real part turns out to be
negative i.e.ℜ⟨nkϕ⋆k ⟩< 0 and the imaginary partℑ⟨nkϕ⋆k ⟩
vanishes. This means that the zonal density and zonal
potential are anti-correlated. This follows from constrain-
ing the solution for ℑ⟨nkϕ⋆k ⟩ to be bounded, which con-
strains that modulational growth rate of zonal intensity be
less than the non-linear damping of density corrugation.
⟨nkϕ⋆k ⟩ is significant in all regimes of electron adiabaticity
and determines the relative phasing of zonal density and
zonal potential. All real space zonal cross-correlations can
be determined from zonal density-potential cross spectra
⟨nkϕ⋆k ⟩;

(f) the zonal density and zonal vorticity cross-correlation is〈
n∇2ϕ

〉
> 0, which means that the density peaks are

co-located with the vorticity peaks. The density gradi-
ent and vorticity gradient cross-correlation becomes pos-
itive i.e.

〈
∇xn∇3

xϕ
〉
> 0. This means that the zonal dens-

ity jumps are co-located with the zonal vorticity jumps.
Finally, another correlation of interest could be between
zonal density gradient and zonal flow

〈
−∇xn∇xϕ

〉
. This

can be obtained as
〈
−∇xn∇xϕ

〉
=
∑

kx
−k2xℜ⟨nkϕ⋆k ⟩> 0.

This means density gradient peaks are co-located with the
zonal flow peaks. Zonal correlations appear quite relevant
to staircase structure characteristics.

The theoretical results listed above have several immediate
pragmatic implications, which this paper explores and devel-
ops. These are discussed below.

(a) While polarization beat noise and modulational effects are
comparable intrinsically (both set by the Reynolds stress!),
the synergy of the two mechanisms is stronger than either
alone. This is because zonal noise acts to excite marginally
stable andweakly damped zonal flows. It thus expands sig-
nificantly the range of zonal flow activity relative to that
predicted by modulational instability calculations. Noise
also increases the branching ratio between zonal flow and
turbulence energy.

(b) The interaction of zonal noise and modulations has a sig-
nificant effect on feed-back processes, and thus the global
characteristics of DW-ZFT. Regarding the L→H trans-
ition, as described by a simple predator–prey model, we
see that noise eliminates the threshold for zonal flow excit-
ation, and so expands the predicted range of the interme-
diate phase (for all else fixed), while drastically reducing
turbulence overshoot. Thus, the nagging question of ‘if
zonal flows are the L→H trigger, what triggers the trig-
ger?’ is eliminated i.e. polarization beat noise triggers the
trigger. Since energy transfer to the zonal flow is acceler-
ated, the threshold for L→H transition (which occurs when
∇P steepens, due to a decrease in transport to neoclassical
levels) is lowered.

(c) Zonal corrugations are excited by noise, regardless of
modulational stability. The zonal density diffusivity is
positive definite. Corrugation generation is thus seen a
means for seeding transport events.

When reading this rather theoretical paper, the experiment-
alist (either physical or digital) may ask ‘what’s in for me?’ To
this end we note that:

(a) the spectral transfer mechanism for corrugations (i.e. pos-
itive diffusivity) is as yet untested. This could be tested
using bicoherence analysis of zonal density perturbations
and intensity with smaller scale fluctuatios;

(b) the zonal cross-correlation has not been measured, its the-
ory is untested, and its relation to staircase structure has
not been addressed. Zonal cross correlation necessitates
measurement of the mesoscale (∼

√
ρiLi) potential struc-

ture. In practice, this seems possible only via Heavy Ion
Beam Probe [45], or by Langmuir probe, -usually in a lim-
ited region near the edge. For either, a measurement might
be performed by measuring the density and potential per-
turbations at low frequency, and on mesoscales, window-
ing at kθ = 0 to obtain the zonal component, and then con-
structing the correlations. Long range correlation analysis
[67] is a possibility for this;

(c) the predator-prey dynamics (intensively studied !) drastic-
ally changes when zonal noise is accounted for. The
domain of zonal flow excitation expands, and the system
never reaches the modulational instability threshold;

(d) the improved L–H transition model presented in this paper
is eminently testable. In particular, the weak overshoot,
expanded domain of zonal mode activity, absence of a
‘trigger’ modulation and the level of residual H mode
turbulence are all seemingly in accord with experimental
findings;
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(e) one might consider comparisons of ‘fits’ of I-phase and
LH data to the KD’03 model and to it is extension reported
here. In particular, the presence or absence of large over-
shoot, as predicted by KD’03 [4], is one way to discrimin-
ate between model versions;

(f) one could examine zonal shear bicoherence with smaller
scale fluctuations for the footprint—or lack thereof—of a
coherent energy transfer events, symptomatic of a trigger
modulation.

More generally, one might:

(a) construct the pdf of zonal flow shears, especially
approaching, an in, I-phase;

(b) examine spectral structure for evidence of universality
and a critical slope. Some evidence of this short already
exists [68].

This paper stimulated several plans for future study. First
of these is to understand zonal flow generation when modula-
tional instability is weak or absent. In that case, does shear-
ing occurs in intermittent and bursty avalanche—like feed-
back events [69]? Does a critical spectral slope self-organize
from these interactions? A related question concerns under-
standing the interaction of corrugations (driven by particle, or
more generally heat flux correlations) with avalanches. In par-
ticular, we speculate that corrugations occurring in the states
of high zonal cross-correlation can be sustained as localized
transport barriers, staircase elements, etc by the accompa-
nying shear flow. Likewise, bi-stable systems can sustain a
long lived corrugation. However, corrugations occurring in
states of low zonal cross-correlation seem likely to overturn,
and drive avalanches, as in a running sandpile. This con-
cern seems especially relevant to collisionless trapped elec-
tron mode turbulence. Does the density gradient state con-
sist of standing corrugations, running avalanches, or mixtures
thereof?

Staircases and layering loom large as topics for further
study. Theory should understand the role of noise in staircases,
which have been considered only in the context of mean field
theory, which neglects fluctuations. One might expect noise to
cause an effective increase in turbulence spreading, and so tend
to smooth staircase features, along with causing a decrease in
the number of steps. Finally, the relation between zonal cross-
correlation and staircase structure should be explored. Does
the zonal cross-correlation and the physics which governs it
set the relative position of corrugation steps and zonal shear
layers? Is there an optimal zonal correlation for the staircase
state? Note that absolute value cross correlations may also
be invoked to infer the staircase pattern. However, spectral
closure theory yields spectral cross-correlation ⟨nkϕ⋆k ⟩. So any
kind of cross-correlation must be obtained in terms of ⟨nkϕ⋆k ⟩.
However to obtain correlation of absolute values in terms of
spectral quantities is much more difficult as, it involves con-
volution of modulii of two infinite series. This can be realized

from the following

〈
|∇xn|

∣∣∇2
xϕ
∣∣〉=〈∣∣∣∣∣∑

k1x

ik1xnk1e
ik1xx

∣∣∣∣∣
∣∣∣∣∣∑
k2x

−k22xϕk2eik2xx
∣∣∣∣∣
〉
.

(116)

Now, how to express the right hand side in terms of the spectral
cross correlation is not at all obvious. Hence, we defer such a
mathematically challenging analysis to future work.
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Appendix A. Derivation of spectral kinetic energy
diffusion

It is convenient to define F1p =ΘE
kpq

[
aEpEk− aE−kEp

]
and

F2p =ΘE
kpq

[
bEpRnkEk− bE−kR

⋆
npEp

]
. Expanding F1 around p⃗=

k⃗ yields

F1p = F1k− qx

(
∂F1p

∂px

)
p⃗=⃗k

+
q2x
2

(
∂2F1p

∂p2x

)
p⃗=⃗k

+ . . . (A1)

It is obvious that the real partF(r)
1k = ℜ

(
ΘE
kkq

[
aEkEk− aE−kEk

])
=

0 as ℜaEk = ℜaE−k and ℑΘE
kkq = 0. Using q2 − p2 = 2qxkx− k2

one gets

T(1)ϕk = ℜ
∑
p⃗+q⃗=⃗k

k2yq
2
xk

2Eq

×

[
−2q2xkx

(
∂F1p

∂px

)
p⃗=⃗k

− k2
q2x
2

(
∂2F1p

∂p2x

)
p⃗=⃗k

]

= ℜ
∑
p⃗+q⃗=⃗k

1
2
k2yq

4
xEq

×

[
−4kxk

2

(
∂F1p

∂px

)
p⃗=⃗k

− k4
(
∂2F1p

∂p2x

)
p⃗=⃗k

]

= ℜ
∑
p⃗+q⃗=⃗k

1
2
k2yq

4
xEq

[
− ∂

∂px
p4
∂F1p

∂px

]
p⃗=⃗k

(A2)

Next (
∂F1p

∂px

)
p⃗=⃗k

=

(
∂ΘE

kpq

∂px

)
p⃗=⃗k

[
aEkEk− aE−kEk

]
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+ΘE
kkq

[
∂aEp
∂px

Ek− aE−k
∂Ep
∂px

]
p⃗=⃗k

so that the real part becomes(
∂F1p

∂px

)(r)

p⃗=⃗k

=ΘEr
kkq

[
∂aErk
∂kx

Ek− aErk
∂Ek
∂kx

]
. (A3)

Similarly(
∂2F1p

∂p2x

)
p⃗=⃗k

=

(
∂2ΘE

kpq

∂p2x

)
p⃗=⃗k

[
aEkEk− aE−kEk

]
+ 2

(
∂ΘE

kpq

∂px

)
p⃗=⃗k

[
∂aEp
∂px

Ek− aE−k
∂Ep
∂px

]
p⃗=⃗k

+Θkkq

[
∂2aEp
∂p2x

Ek− aE−k
∂2Ep
∂p2x

]
p⃗=⃗k

so that the real part becomes(
∂2F1p

∂p2x

)(r)

p⃗=⃗k

=

(
∂ΘEr

kkq

∂kx

)[
∂aErp
∂kx

Ek− aErk
∂Ek
∂kx

]

+Θkkq

[
∂2aErk
∂k2x

Ek− aErk
∂2Ek
∂k2x

]
=

∂

∂kx

[
ΘEr
kkq

(
∂aErp
∂kx

Ek− aErk
∂Ek
∂kx

)]
. (A4)

Hence the expression for T(1)ϕk becomes

T(1)ϕk =
∂

∂kx

[∑
q

1
2
k2yk

4q4xEqΘ
Er
kkq

(
aErk

∂Ek
∂kx

− ∂aErk
∂kx

Ek

)]
.

(A5)

Similarly F2 is expanded about p⃗= k⃗,

F2p = F2k− qx

(
∂F2p

∂px

)
p⃗=⃗k

+
q2x
2

(
∂2F2p

∂p2x

)
p⃗=⃗k

+ . . . (A6)

where F2k =ΘE
kkq

[
bEkRnkEk− bE−kR

⋆
nkEk

]
so that it is real part

F(r)
2k = 0.

(
∂F2p

∂px

)
p⃗=⃗k

=

(
∂ΘE

kpq

∂px

)
p⃗=⃗k

[
bEkRnkEk− bE−kR

⋆
nkEk

]
+ΘE

kkq

[
∂bEk
∂kx

(RnkEk)− bE−k
∂

∂kx
(R⋆

nkEk)

]
so that the real part(

∂F2p

∂px

)(r)

p⃗=⃗k

=ΘEr
kkq

[
∂bEk
∂kx

(RnkEk)− bEk
∂

∂kx
(RnkEk)

](r)
.

(A7)

Similarly(
∂2F2p

∂p2x

)
p⃗=⃗k

=

(
∂2ΘE

kpq

∂p2x

)
p⃗=⃗k

[
bEkRnkEk− bE−kR

⋆
nkEk

]
+ 2

(
∂ΘE

kpq

∂px

)
p⃗=⃗k

[
∂bEp
∂px

RnkEk− bE−k

∂R⋆
npEp
∂px

]
p⃗=⃗k

+ Θkkq

[
∂2bEp
∂p2x

RnkEk− bE−k

∂2R⋆
npEp

∂p2x

]
p⃗=⃗k

so that the real part becomes(
∂2F2p

∂p2x

)(r)

p⃗=⃗k

=
∂ΘEr

kkq

∂kx

[
∂bEk
∂kx

RnkEk− bEk
∂RnkEk
∂kx

](r)
+Θr

kkq

[
∂2bEk
∂k2x

RnkEk− bEk
∂2RnkEk
∂k2x

](r)
=

∂

∂kx

[
ΘEr
kkq

(
∂bEk
∂kx

RnkEk− bEk
∂RnkEk
∂kx

)(r)
]
.

(A8)

Eventually it is straightforward to show

T(2)ϕk =
1
k2

∂

∂kx

[∑
q

1
2
k2yk

4q4xEqΘ
Er
kkq

×
(
bEk

∂

∂kx
(RnkEk)−

∂bEk
∂kx

RnkEk

)(r)
]
. (A9)

Appendix B. Derivation of spectral internal energy
diffusion

It is convenient to define

F1np =Θkpq

[
d⋆k
〈
|np|2

〉
− dp

〈
|nk|2

〉]
and

F2np =Θkpq
[(
q2 − k2

)
cp ⟨n⋆kϕk⟩−

(
q2 − p2

)
c⋆k
〈
npϕ

⋆
p

〉]
.

Expanding F1 around p⃗= k⃗ yields

F1np = F1nk− qx

(
∂F1np

∂px

)
p⃗=⃗k

+
q2x
2

(
∂2F1np

∂p2x

)
p⃗=⃗k

+ . . .

(A10)

It is obvious that the real part F(r)
1nk = ℜ

(
ΘE
kkq

[
d⋆k

〈
|np|2

〉
−dp

〈
|nk|2

〉])
= 0 as ℜd⋆k = ℜdk and ℑΘkkq = 0. Next(

∂F1np

∂px

)
p⃗=⃗k

=

(
∂Θkpq

∂px

)
p⃗=⃗k

[
d⋆k
〈
|np|2

〉
− dp

〈
|nk|2

〉]⃗
p=⃗k

+Θkkq

[
d⋆k

∂

∂px

〈
|np|2

〉
−
∂dp
∂px

〈
|nk|2

〉]
p⃗=⃗k

.
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so that the real part becomes(
∂F1np

∂px

)(r)

p⃗=⃗k

=Θ
(r)
kkq

[
drk

∂

∂kx

〈
|nk|2

〉
− ∂drk
∂kx

〈
|nk|2

〉]
.

(A11)

Similarly(
∂2F1np

∂p2x

)
p⃗=⃗k

=

(
∂2Θkpq

∂p2x

)
p⃗=⃗k

[
d⋆k
〈
|np|2

〉
− dp

〈
|nk|2

〉]⃗
p=⃗k

+ 2

(
∂Θkpq

∂px

)
p⃗=⃗k

[
d⋆k

∂

∂px

〈
|np|2

〉
−
∂dp
∂px

〈
|nk|2

〉]
p⃗=⃗k

+ Θkkq

[
d⋆k

∂2

∂p2x

〈
|np|2

〉
−
∂2dp
∂p2x

〈
|nk|2

〉]
p⃗=⃗k

so that the real part becomes(
∂2F1np

∂p2x

)(r)

p⃗=⃗k

=
∂Θ

(r)
kkq

∂kx

[
drk

∂

∂kx

〈
|nk|2

〉
− ∂drk
∂kx

〈
|nk|2

〉]
+Θ

(r)
kkq

[
d⋆k
∂2

∂k2x

〈
|nk|2

〉
− ∂2dk
∂k2x

〈
|nk|2

〉]
=

∂

∂kx

[
Θ

(r)
kkq

(
drk

∂

∂kx

〈
|nk|2

〉
− ∂drk
∂kx

〈
|nk|2

〉)]
. (A12)

Hence expression for T(1)nk becomes

T(1)nk =
∂

∂kx

[∑
q

k2yq
4
x

〈
|ϕq|2

〉
Θ

(r)
kkq(

drk
∂

∂kx

〈
|nk|2

〉
− ∂drk
∂kx

〈
|nk|2

〉)]
. (A13)

Notice that,
(

∂F1p

∂px

)(r)
p⃗=⃗k

did not contribute to T(1)nk as the integ-

rand becomes odd in qx. Using q≪ k, expanding F2 around
p⃗= k⃗ yields

F2np = F2nk− qx

(
∂F2np

∂px

)
p⃗=⃗k

+
q2x
2

(
∂2F2np

∂p2x

)
p⃗=⃗k

+ . . .

(A14)

Now F2nk =Θkkq
[(
q2 − k2

)
ck ⟨n⋆kϕk⟩−

(
q2 − k2

)
c⋆k ⟨nkϕ⋆k ⟩

]
so that its real part F(r)

2k = 0. Similarly, it is straightforward to
show that(

∂F2np

∂px

)(r)

p⃗=⃗k

=Θ
(r)
kkq

[
ck

∂

∂kx
k2 ⟨n⋆kϕk⟩−

∂ck
∂kx

k2 ⟨n⋆kϕk⟩
](r)

and(
∂2F2np

∂p2x

)(r)

p⃗=⃗k

=Θ
(r)
kkq

[
c⋆k

∂

∂kx
k2 ⟨nkϕ⋆k ⟩−

∂ck
∂kx

k2 ⟨n⋆kϕk⟩
](r)

.

Hence the expression for T(2)nk becomes

T(2)nk =
∂

∂kx

[∑
q

k2yq
4
x

〈
|ϕq|2

〉
Θ

(r)
kkq

×
(
c⋆k

∂

∂kx
k2 ⟨nkϕ⋆k ⟩−

∂ck
∂kx

k2 ⟨n⋆kϕk⟩
)(r)

]
. (A15)

Appendix C. Derivation of induced diffusion of
spectral total energy and enstrophy at α̂ = ∞

It is convenient to define

fp =
σQp

1+ p2
ΘQ
kpq (Qk−Qp) . (A16)

Expanding fp around p⃗= k⃗ yields

fp = fk− qx

(
∂fp
∂px

)
p⃗=⃗k

+
q2x
2

(
∂2fp
∂p2x

)
p⃗=⃗k

+ . . . (A17)

Obviously, f k= 0. Then using q2 − p2 = 2qxkx− k2 and the
above expansion, one gets

Tk = 2
∑
q⃗

k2yq
2
x
σQk

1+ k2
k2Qq[

−2q2xkx

(
∂fp
∂px

)
p⃗=⃗k

− k2
q2x
2

(
∂2fp
∂p2x

)
p⃗=⃗k

]
. (A18)

The derivatives are easily calculated from the expression for
f p above.

(
∂fp
∂px

)
p⃗=⃗k

=−
σQk

1+ k2
ΘQ
kkq

∂Qk

∂kx
(A19)

and(
∂2fp
∂p2x

)
p⃗=⃗k

=− ∂

∂kx

(
σQk

1+ k2

)
− ∂

∂kx

(
σQk

1+ k2
ΘQ
kkq

∂Qk

∂kx

)
.

(A20)

Using the derivatives given by equations (A19) and (A20) in
equation (A18), after some easy manipulations, yields

Tk =
∂

∂kx

∑
q

k2yq
4
xQqk

4

(
σQk

1+ k2

)2

ΘQ
kpq

∂Qk

∂kx

 .

Appendix D. Derivation of zonal cross-spectrum
equation

The triplet correlations on the right hand side of equation (75)
are determined by the phase coherency of the three modes k⃗,
p⃗, q⃗. To first order, in a state of turbulence, this phase coher-
ency is determined by the direct interaction among these three
modes in the presence of the stochastic background of all other
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interactions. Denoting the perturbation in ϕk due to this direct
interaction by δϕk, the triad correlations are approximated as

〈
nkϕ

⋆
pϕ

⋆
q

〉
=
〈
δnkϕ

⋆
pϕ

⋆
q

〉
+
〈
nkδϕ

⋆
pϕ

⋆
q

〉
+
〈
nkϕ

⋆
pδϕ

⋆
q

〉
(A21)

⟨ϕ⋆kϕpnq⟩= ⟨δϕ⋆kϕpnq⟩+ ⟨ϕ⋆k δϕpnq⟩+ ⟨ϕ⋆kϕpδnq⟩ (A22)

⟨ϕ⋆kϕqnp⟩= ⟨δϕ⋆kϕqnp⟩+ ⟨ϕ⋆k δϕqnp⟩+ ⟨ϕ⋆kϕqδnp⟩ . (A23)

For zonal density beat mode δnk〈
δnkϕ

⋆
pϕ

⋆
q

〉
=

ˆ t

−∞
dt′e−ηk(t−t′) 〈S2k(t′)ϕ⋆pϕ⋆q〉

where〈
S2k(t

′)ϕ⋆p(t)ϕ
⋆
q(t)
〉
= ẑ · p⃗× q⃗

[〈
ϕp(t

′)nq(t
′)ϕ⋆p(t)ϕ

⋆
q(t)
〉

−
〈
ϕq(t

′)np(t
′)ϕ⋆p(t)ϕ

⋆
q(t)
〉]

= ẑ · p⃗× q⃗
[〈
ϕp(t

′)ϕ⋆p(t)
〉〈
nq(t

′)ϕ⋆q(t)
〉

−
〈
ϕq(t

′)ϕ⋆q(t)
〉〈
np(t

′)ϕ⋆p(t)
〉]
.

Hence〈
δnkϕ

⋆
pϕ

⋆
q

〉
=Θ⋆

kpqẑ · p⃗×q⃗
[〈
ϕpϕ

⋆
p

〉〈
nqϕ

⋆
q

〉
−
〈
ϕqϕ

⋆
q

〉〈
npϕ

⋆
p

〉]
.

For zonal potential beat mode δϕk

⟨δϕ⋆kϕpnq⟩=
1
k2x

ˆ t

−∞
dt′e−ηk(t−t′) ⟨S⋆1k(t′)ϕpnq⟩

where

⟨S⋆1k(t′)ϕp(t)nq(t)⟩
= ẑ · p⃗× q⃗

(
q2 − p2

)〈
ϕ⋆p(t

′)ϕ⋆q(t
′)ϕp(t)nq(t)

〉
= ẑ · p⃗× q⃗

(
q2 − p2

)〈
ϕ⋆p(t

′)ϕp(t)
〉〈
ϕ⋆q(t

′)nq(t)
〉
.

Hence

⟨δϕ⋆kϕpnq⟩=
1
k2x
Θkpqẑ · p⃗× q⃗

(
q2 − p2

)〈
ϕ⋆pϕp

〉〈
ϕ⋆qnq

〉
and

⟨δϕ⋆kϕqnp⟩=
1
k2x
Θkpqẑ · p⃗× q⃗

(
q2 − p2

)〈
ϕ⋆qϕq

〉〈
ϕ⋆pnp

〉
.

So the noise term becomes

Fzonal⟨nϕ⟩k
=
∑
k⃗=p⃗+q⃗

(ẑ · p⃗× q⃗)2
1
k2x

(
q2 − p2

)[
Θ⋆
kpq+Θkpq

]
×
[〈
ϕpϕ

⋆
p

〉〈
nqϕ

⋆
q

〉
−
〈
ϕqϕ

⋆
q

〉〈
npϕ

⋆
p

〉]
.

Now the coherent terms are calculated.〈
nkδϕ

⋆
pϕ

⋆
q

〉
=

ˆ t

−∞
dt′e−(−iω⋆

p +ηp)(t−t′) [a⋆p 〈nkS⋆1p(t′)ϕ⋆q〉
+b⋆p

〈
nkS

⋆
2p(t

′)ϕ⋆q
〉]

where〈
nkS

⋆
1p(t

′)ϕ⋆q
〉
=−ẑ · q⃗× k⃗

(
k2 − q2

)〈
nk(t)ϕq(t

′)ϕ⋆k (t
′)ϕ⋆q(t)

〉
= ẑ · p⃗× q⃗

(
k2 − q2

)
⟨nk(t)ϕ⋆k (t′)⟩

〈
ϕq(t

′)ϕ⋆q(t)
〉

and 〈
nkS

⋆
2p(t

′)ϕ⋆q
〉
=−ẑ · q⃗× k⃗

〈
nk(t)ϕq(t

′)n⋆k (t
′)ϕ⋆q(t)

−nk(t)nq(t′)ϕ⋆k (t′)ϕ⋆q(t)
〉

Hence〈
nkδϕ

⋆
pϕ

⋆
q

〉
=Θ⋆

k,p,qẑ · p⃗× q⃗
[
a⋆p
(
k2 − q2

)
⟨nkϕ⋆k ⟩

〈
ϕqϕ

⋆
q

〉
+b⋆p

(〈
n2k
〉〈
ϕ2
q

〉
−⟨nkϕ⋆k ⟩

〈
nqϕ

⋆
q

〉)]
.

Again

⟨ϕ⋆k δϕpnq⟩=
ˆ t

−∞
dt′e−(iωp+ηp)(t−t′) [ap ⟨ϕ⋆kS1p(t′)nq⟩

+bp ⟨ϕ⋆kS2p(t′)nq⟩]

where

⟨ϕ⋆kS1p(t′)nq⟩=−ẑ · q⃗× k⃗
(
k2 − q2

)
⟨ϕ⋆k (t)ϕ−q(t

′)ϕk(t
′)nq(t)⟩

= ẑ · p⃗× q⃗
(
k2 − q2

)
⟨ϕ⋆k (t)ϕk(t′)⟩

〈
ϕ⋆q(t

′)nq(t)
〉

and

⟨ϕ⋆kS2p(t′)nq⟩=−ẑ · q⃗× k⃗⟨ϕ⋆k (t)ϕ−q(t′)nk(t′)nq(t)
−ϕ⋆k (t)n−q(t

′)ϕk(t
′)nq(t)⟩

= ẑ · p⃗× q⃗
[
⟨ϕ⋆k (t)nk(t′)⟩

〈
ϕ⋆q(t

′)nq(t)
〉

−⟨ϕ⋆k (t)ϕk(t′)⟩
〈
n⋆q(t

′)nq(t)
〉]
.

Therefore

⟨ϕ⋆k δϕpnq⟩=Θk,p,qẑ · p⃗× q⃗
[
ap
(
k2 − q2

)
⟨ϕ⋆kϕk⟩

〈
ϕ⋆qnq

〉
+bp

(
⟨nkϕ⋆k ⟩

〈
nqϕ

⋆
q

〉
−⟨ϕ⋆kϕk⟩

〈
n⋆qnq

〉)]

⟨ϕ⋆k δϕqnp⟩=Θk,p,qẑ · p⃗× q⃗
[
aq
(
q2 − k2

)
⟨ϕ⋆kϕk⟩

〈
ϕ⋆pnp

〉
+bq

(
⟨ϕ⋆kϕk⟩

〈
n⋆pnp

〉
−⟨ϕ⋆knk⟩

〈
ϕ⋆pnp

〉)]
.

Next we calculate〈
nkϕ

⋆
pδϕ

⋆
q

〉
=

ˆ t

−∞
dt′e−(−iω⋆

q +ηq)(t−t′) [a⋆q 〈nkϕ⋆pS⋆1q(t′)〉
+b⋆q

〈
nkϕ

⋆
pS

⋆
2q(t

′)
〉]

where〈
nkϕ

⋆
pS

⋆
1q(t

′)
〉
=−ẑ · k⃗× p⃗

(
p2 − k2

)〈
nk(t)ϕ

⋆
p(t)ϕ

⋆
k (t

′)ϕp(t
′)
〉

= ẑ · p⃗× q⃗
(
p2 − k2

)
⟨nk(t)ϕ⋆k (t′)⟩

〈
ϕ⋆p(t)ϕp(t

′)
〉

and 〈
nkϕ

⋆
pS

⋆
2q(t

′)
〉
=−ẑ · k⃗× p⃗

〈
nk(t)ϕ

⋆
p(t)(ϕ

⋆
k (t

′)np(t
′)
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−ϕp(t′)n⋆k (t′))⟩
= ẑ · p⃗× q⃗

(
⟨nk(t)ϕ⋆k (t′)⟩

〈
np(t

′)ϕ⋆p(t)
〉

−⟨nk(t)n⋆k (t′)⟩
〈
ϕ⋆p(t)ϕp(t

′)
〉)

so that〈
nkϕ

⋆
pδϕ

⋆
q

〉
=Θ⋆

kpqẑ · p⃗× q⃗
[(
p2 − k2

)
a⋆q ⟨nkϕ⋆k ⟩

〈
ϕ⋆pϕp

〉
+b⋆q

(
⟨nkϕ⋆k ⟩

〈
npϕ

⋆
p

〉
−⟨nkn⋆k ⟩

〈
ϕ⋆pϕp

〉)]

⟨ϕ⋆kϕpδnq⟩=
ˆ t

−∞
dt′e−(iωq+ηq)(t−t′) [cq ⟨ϕ⋆kϕpS1q(t′)⟩

+dq ⟨ϕ⋆kϕpS2q(t′)⟩]

⟨ϕ⋆kϕpS1q(t′)⟩=−ẑ · k⃗× p⃗
(
p2 − k2

)〈
ϕ⋆k (t)ϕp(t)ϕk(t

′)ϕ⋆p(t
′)
〉

= ẑ · p⃗× q⃗
(
p2 − k2

)
⟨ϕ⋆k (t)ϕk(t′)⟩

〈
ϕp(t)ϕ

⋆
p(t

′)
〉
.

⟨ϕ⋆kϕpS2q(t′)⟩=−ẑ · k⃗× p⃗
[〈
ϕ⋆k (t)ϕp(t)

(
ϕk(t

′)n⋆p(t
′)

−ϕ⋆p(t′)nk(t′)
)〉]

= ẑ · p⃗× q⃗
[
⟨ϕ⋆k (t)ϕk(t′)⟩

〈
ϕp(t)n

⋆
p(t

′)
〉

−⟨ϕ⋆k (t)nk(t′)⟩
〈
ϕp(t)ϕ

⋆
p(t

′)
〉]

⟨ϕ⋆kϕpδnq⟩=Θkpqẑ · p⃗× q⃗
[
cq
(
p2 − k2

)
⟨ϕ⋆kϕk⟩

〈
ϕpϕ

⋆
p

〉
+dq

(
⟨ϕ⋆kϕk⟩

〈
ϕpn

⋆
p

〉
−⟨ϕ⋆knk⟩

〈
ϕpϕ

⋆
p

〉)]

⟨ϕ⋆kϕqδnp⟩=
ˆ t

−∞
dt′e−(iωp+ηp)(t−t′) [cp ⟨ϕ⋆kϕqS1p(t′)⟩

+dp ⟨ϕ⋆kϕqS2p(t′)⟩]

⟨ϕ⋆kϕqS1p(t′)⟩=−ẑ · q⃗× k⃗
(
k2 − q2

)〈
ϕ⋆k (t)ϕq(t)ϕ

⋆
q(t

′)ϕk(t
′)
〉

= ẑ · p⃗× q⃗
(
k2 − q2

)
⟨ϕ⋆k (t)ϕk(t′)⟩

〈
ϕq(t)ϕ

⋆
q(t

′)
〉

⟨ϕ⋆kϕqS2p(t′)⟩=−ẑ · q⃗× k⃗⟨ϕ⋆k (t)ϕq(t)(ϕ⋆q(t′)nk(t′)
−ϕk(t

′)n⋆q(t
′))⟩

= ẑ · p⃗× q⃗[⟨ϕ⋆k (t)nk(t′)⟩⟨ϕq(t)ϕ⋆q(t′)⟩
− ⟨ϕ⋆k (t)ϕk(t′)⟩⟨ϕq(t)n⋆q(t′)⟩]

⟨ϕ⋆kϕqδnp⟩=Θkpqẑ · p⃗× q⃗
[
cp
(
k2 − q2

)
⟨ϕ⋆kϕk⟩

〈
ϕqϕ

⋆
q

〉
+dp

(
⟨ϕ⋆knk⟩

〈
ϕqϕ

⋆
q

〉
−⟨ϕ⋆kϕk⟩

〈
ϕqn

⋆
q

〉)]
.

Eventually one gets(
∂

∂t
+(µ+Dn)k

2
x

)
⟨nkϕ⋆k ⟩

= 2
∑
k⃗=p⃗+q⃗

(ẑ · p⃗× q⃗)2Θ⋆
k,p,q

(
q2 − p2

)
k2x

[
a⋆p
(
k2 − q2

)
⟨nkϕ⋆k ⟩

×
〈
ϕqϕ

⋆
q

〉
+ b⋆p

(〈
n2k
〉〈
ϕ2
q

〉
−⟨nkϕ⋆k ⟩

〈
nqϕ

⋆
q

〉)]
+ 2

∑
k⃗=p⃗+q⃗

(ẑ · p⃗× q⃗)2Θk,p,q
[
ap
(
k2 − q2

)
⟨ϕ⋆kϕk⟩

〈
ϕ⋆qnq

〉
+bp

(
⟨nkϕ⋆k ⟩

〈
nqϕ

⋆
q

〉
−⟨ϕ⋆kϕk⟩

〈
n⋆qnq

〉)]
+ 2

∑
k⃗=p⃗+q⃗

(ẑ · p⃗× q⃗)2Θk,p,q
[
cq
(
p2 − k2

)
⟨ϕ⋆kϕk⟩

〈
ϕpϕ

⋆
p

〉
+dq

(
⟨ϕ⋆kϕk⟩

〈
ϕpn

⋆
p

〉
−⟨ϕ⋆knk⟩

〈
ϕpϕ

⋆
p

〉)]
+
∑
k⃗=p⃗+q⃗

(ẑ · p⃗× q⃗)2
1
k2x

(
q2 − p2

)[
Θ⋆
kpq+Θkpq

]
×
[〈
ϕpϕ

⋆
p

〉〈
nqϕ

⋆
q

〉
−
〈
ϕqϕ

⋆
q

〉〈
npϕ

⋆
p

〉]
. (A24)

The first, second and third, square bracketed terms on the right
hand side of the above equation are the coherent terms and the
last square bracket term is the incoherent noise term.
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